MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem2 Structured version   Visualization version   GIF version

Theorem cantnflem2 8587
Description: Lemma for cantnf 8590. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
cantnf.c (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
cantnf.s (𝜑𝐶 ⊆ ran (𝐴 CNF 𝐵))
cantnf.e (𝜑 → ∅ ∈ 𝐶)
Assertion
Ref Expression
cantnflem2 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnflem2
StepHypRef Expression
1 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . . . . 10 (𝜑𝐵 ∈ On)
3 oecl 7617 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
41, 2, 3syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
5 cantnf.c . . . . . . . . 9 (𝜑𝐶 ∈ (𝐴𝑜 𝐵))
6 onelon 5748 . . . . . . . . 9 (((𝐴𝑜 𝐵) ∈ On ∧ 𝐶 ∈ (𝐴𝑜 𝐵)) → 𝐶 ∈ On)
74, 5, 6syl2anc 693 . . . . . . . 8 (𝜑𝐶 ∈ On)
8 cantnf.e . . . . . . . 8 (𝜑 → ∅ ∈ 𝐶)
9 ondif1 7581 . . . . . . . 8 (𝐶 ∈ (On ∖ 1𝑜) ↔ (𝐶 ∈ On ∧ ∅ ∈ 𝐶))
107, 8, 9sylanbrc 698 . . . . . . 7 (𝜑𝐶 ∈ (On ∖ 1𝑜))
1110eldifbd 3587 . . . . . 6 (𝜑 → ¬ 𝐶 ∈ 1𝑜)
12 ssel 3597 . . . . . . 7 ((𝐴𝑜 𝐵) ⊆ 1𝑜 → (𝐶 ∈ (𝐴𝑜 𝐵) → 𝐶 ∈ 1𝑜))
135, 12syl5com 31 . . . . . 6 (𝜑 → ((𝐴𝑜 𝐵) ⊆ 1𝑜𝐶 ∈ 1𝑜))
1411, 13mtod 189 . . . . 5 (𝜑 → ¬ (𝐴𝑜 𝐵) ⊆ 1𝑜)
15 oe0m 7598 . . . . . . . . 9 (𝐵 ∈ On → (∅ ↑𝑜 𝐵) = (1𝑜𝐵))
162, 15syl 17 . . . . . . . 8 (𝜑 → (∅ ↑𝑜 𝐵) = (1𝑜𝐵))
17 difss 3737 . . . . . . . 8 (1𝑜𝐵) ⊆ 1𝑜
1816, 17syl6eqss 3655 . . . . . . 7 (𝜑 → (∅ ↑𝑜 𝐵) ⊆ 1𝑜)
19 oveq1 6657 . . . . . . . 8 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
2019sseq1d 3632 . . . . . . 7 (𝐴 = ∅ → ((𝐴𝑜 𝐵) ⊆ 1𝑜 ↔ (∅ ↑𝑜 𝐵) ⊆ 1𝑜))
2118, 20syl5ibrcom 237 . . . . . 6 (𝜑 → (𝐴 = ∅ → (𝐴𝑜 𝐵) ⊆ 1𝑜))
22 oe1m 7625 . . . . . . . 8 (𝐵 ∈ On → (1𝑜𝑜 𝐵) = 1𝑜)
23 eqimss 3657 . . . . . . . 8 ((1𝑜𝑜 𝐵) = 1𝑜 → (1𝑜𝑜 𝐵) ⊆ 1𝑜)
242, 22, 233syl 18 . . . . . . 7 (𝜑 → (1𝑜𝑜 𝐵) ⊆ 1𝑜)
25 oveq1 6657 . . . . . . . 8 (𝐴 = 1𝑜 → (𝐴𝑜 𝐵) = (1𝑜𝑜 𝐵))
2625sseq1d 3632 . . . . . . 7 (𝐴 = 1𝑜 → ((𝐴𝑜 𝐵) ⊆ 1𝑜 ↔ (1𝑜𝑜 𝐵) ⊆ 1𝑜))
2724, 26syl5ibrcom 237 . . . . . 6 (𝜑 → (𝐴 = 1𝑜 → (𝐴𝑜 𝐵) ⊆ 1𝑜))
2821, 27jaod 395 . . . . 5 (𝜑 → ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → (𝐴𝑜 𝐵) ⊆ 1𝑜))
2914, 28mtod 189 . . . 4 (𝜑 → ¬ (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
30 elpri 4197 . . . . 5 (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
31 df2o3 7573 . . . . 5 2𝑜 = {∅, 1𝑜}
3230, 31eleq2s 2719 . . . 4 (𝐴 ∈ 2𝑜 → (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
3329, 32nsyl 135 . . 3 (𝜑 → ¬ 𝐴 ∈ 2𝑜)
341, 33eldifd 3585 . 2 (𝜑𝐴 ∈ (On ∖ 2𝑜))
3534, 10jca 554 1 (𝜑 → (𝐴 ∈ (On ∖ 2𝑜) ∧ 𝐶 ∈ (On ∖ 1𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cdif 3571  wss 3574  c0 3915  {cpr 4179  {copab 4712  dom cdm 5114  ran crn 5115  Oncon0 5723  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554  𝑜 coe 7559   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566
This theorem is referenced by:  cantnflem3  8588  cantnflem4  8589
  Copyright terms: Public domain W3C validator