| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnflem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for cantnf 8590. (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s |
|
| cantnfs.a |
|
| cantnfs.b |
|
| oemapval.t |
|
| cantnf.c |
|
| cantnf.s |
|
| cantnf.e |
|
| Ref | Expression |
|---|---|
| cantnflem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.a |
. . 3
| |
| 2 | cantnfs.b |
. . . . . . . . . 10
| |
| 3 | oecl 7617 |
. . . . . . . . . 10
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . . . . 9
|
| 5 | cantnf.c |
. . . . . . . . 9
| |
| 6 | onelon 5748 |
. . . . . . . . 9
| |
| 7 | 4, 5, 6 | syl2anc 693 |
. . . . . . . 8
|
| 8 | cantnf.e |
. . . . . . . 8
| |
| 9 | ondif1 7581 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | sylanbrc 698 |
. . . . . . 7
|
| 11 | 10 | eldifbd 3587 |
. . . . . 6
|
| 12 | ssel 3597 |
. . . . . . 7
| |
| 13 | 5, 12 | syl5com 31 |
. . . . . 6
|
| 14 | 11, 13 | mtod 189 |
. . . . 5
|
| 15 | oe0m 7598 |
. . . . . . . . 9
| |
| 16 | 2, 15 | syl 17 |
. . . . . . . 8
|
| 17 | difss 3737 |
. . . . . . . 8
| |
| 18 | 16, 17 | syl6eqss 3655 |
. . . . . . 7
|
| 19 | oveq1 6657 |
. . . . . . . 8
| |
| 20 | 19 | sseq1d 3632 |
. . . . . . 7
|
| 21 | 18, 20 | syl5ibrcom 237 |
. . . . . 6
|
| 22 | oe1m 7625 |
. . . . . . . 8
| |
| 23 | eqimss 3657 |
. . . . . . . 8
| |
| 24 | 2, 22, 23 | 3syl 18 |
. . . . . . 7
|
| 25 | oveq1 6657 |
. . . . . . . 8
| |
| 26 | 25 | sseq1d 3632 |
. . . . . . 7
|
| 27 | 24, 26 | syl5ibrcom 237 |
. . . . . 6
|
| 28 | 21, 27 | jaod 395 |
. . . . 5
|
| 29 | 14, 28 | mtod 189 |
. . . 4
|
| 30 | elpri 4197 |
. . . . 5
| |
| 31 | df2o3 7573 |
. . . . 5
| |
| 32 | 30, 31 | eleq2s 2719 |
. . . 4
|
| 33 | 29, 32 | nsyl 135 |
. . 3
|
| 34 | 1, 33 | eldifd 3585 |
. 2
|
| 35 | 34, 10 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: cantnflem3 8588 cantnflem4 8589 |
| Copyright terms: Public domain | W3C validator |