![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfili | Structured version Visualization version GIF version |
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cfili | ⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cfil 23053 | . . . . . . . 8 ⊢ CauFil = (𝑑 ∈ ∪ ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) | |
2 | 1 | dmmptss 5631 | . . . . . . 7 ⊢ dom CauFil ⊆ ∪ ran ∞Met |
3 | elfvdm 6220 | . . . . . . 7 ⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ dom CauFil) | |
4 | 2, 3 | sseldi 3601 | . . . . . 6 ⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ ∪ ran ∞Met) |
5 | xmetunirn 22142 | . . . . . 6 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
6 | 4, 5 | sylib 208 | . . . . 5 ⊢ (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
7 | iscfil2 23064 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟))) |
9 | 8 | ibi 256 | . . 3 ⊢ (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟)) |
10 | 9 | simprd 479 | . 2 ⊢ (𝐹 ∈ (CauFil‘𝐷) → ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟) |
11 | breq2 4657 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((𝑦𝐷𝑧) < 𝑟 ↔ (𝑦𝐷𝑧) < 𝑅)) | |
12 | 11 | 2ralbidv 2989 | . . . 4 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅)) |
13 | 12 | rexbidv 3052 | . . 3 ⊢ (𝑟 = 𝑅 → (∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅)) |
14 | 13 | rspccva 3308 | . 2 ⊢ ((∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑟 ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅) |
15 | 10, 14 | sylan 488 | 1 ⊢ ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦𝐷𝑧) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 {crab 2916 ⊆ wss 3574 ∪ cuni 4436 class class class wbr 4653 × cxp 5112 dom cdm 5114 ran crn 5115 “ cima 5117 ‘cfv 5888 (class class class)co 6650 0cc0 9936 < clt 10074 ℝ+crp 11832 [,)cico 12177 ∞Metcxmt 19731 Filcfil 21649 CauFilccfil 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-xmet 19739 df-fbas 19743 df-fil 21650 df-cfil 23053 |
This theorem is referenced by: cfil3i 23067 fgcfil 23069 iscmet3 23091 cfilres 23094 |
Copyright terms: Public domain | W3C validator |