MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfil3i Structured version   Visualization version   GIF version

Theorem cfil3i 23067
Description: A Cauchy filter contains balls of any pre-chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfil3i ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝑥,𝑅   𝑥,𝐷

Proof of Theorem cfil3i
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfili 23066 . . 3 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
213adant1 1079 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
3 cfilfil 23065 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
433adant3 1081 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
5 fileln0 21654 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
64, 5sylan 488 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠 ≠ ∅)
7 r19.2z 4060 . . . . . 6 ((𝑠 ≠ ∅ ∧ ∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅) → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅)
87ex 450 . . . . 5 (𝑠 ≠ ∅ → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
96, 8syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
10 filelss 21656 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
114, 10sylan 488 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝑠𝑋)
12 ssrexv 3667 . . . . 5 (𝑠𝑋 → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
1311, 12syl 17 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
14 dfss3 3592 . . . . . . 7 (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅))
15 simpl1 1064 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → 𝐷 ∈ (∞Met‘𝑋))
1615ad2antrr 762 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝐷 ∈ (∞Met‘𝑋))
17 simpll3 1102 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
1817rpxrd 11873 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
1918adantr 481 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑅 ∈ ℝ*)
20 simplr 792 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑥𝑋)
2111adantr 481 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝑋)
2221sselda 3603 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → 𝑦𝑋)
23 elbl2 22195 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2416, 19, 20, 22, 23syl22anc 1327 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) ∧ 𝑦𝑠) → (𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ (𝑥𝐷𝑦) < 𝑅))
2524ralbidva 2985 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 𝑦 ∈ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
2614, 25syl5bb 272 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) ↔ ∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅))
274ad2antrr 762 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
28 simplr 792 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑠𝐹)
2915adantr 481 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝐷 ∈ (∞Met‘𝑋))
30 simpr 477 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → 𝑥𝑋)
31 blssm 22223 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑅 ∈ ℝ*) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
3229, 30, 18, 31syl3anc 1326 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋)
33 filss 21657 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑠𝐹 ∧ (𝑥(ball‘𝐷)𝑅) ⊆ 𝑋𝑠 ⊆ (𝑥(ball‘𝐷)𝑅))) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
34333exp2 1285 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑠𝐹 → ((𝑥(ball‘𝐷)𝑅) ⊆ 𝑋 → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))))
3527, 28, 32, 34syl3c 66 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (𝑠 ⊆ (𝑥(ball‘𝐷)𝑅) → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3626, 35sylbird 250 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) ∧ 𝑥𝑋) → (∀𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3736reximdva 3017 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∃𝑥𝑋𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
389, 13, 373syld 60 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) ∧ 𝑠𝐹) → (∀𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
3938rexlimdva 3031 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → (∃𝑠𝐹𝑥𝑠𝑦𝑠 (𝑥𝐷𝑦) < 𝑅 → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹))
402, 39mpd 15 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑅) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  cfv 5888  (class class class)co 6650  *cxr 10073   < clt 10074  +crp 11832  ∞Metcxmt 19731  ballcbl 19733  Filcfil 21649  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-psmet 19738  df-xmet 19739  df-bl 19741  df-fbas 19743  df-fil 21650  df-cfil 23053
This theorem is referenced by:  iscfil3  23071  cfilfcls  23072  relcmpcmet  23115
  Copyright terms: Public domain W3C validator