MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Structured version   Visualization version   GIF version

Theorem iscfil2 23064
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐹   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 23063 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
2 xmetf 22134 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
32ad3antrrr 766 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
4 ffun 6048 . . . . . . . 8 (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun 𝐷)
53, 4syl 17 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → Fun 𝐷)
6 simplr 792 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) → 𝐹 ∈ (Fil‘𝑋))
7 filelss 21656 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
86, 7sylan 488 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → 𝑦𝑋)
9 xpss12 5225 . . . . . . . . 9 ((𝑦𝑋𝑦𝑋) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
108, 8, 9syl2anc 693 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ (𝑋 × 𝑋))
11 fdm 6051 . . . . . . . . 9 (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom 𝐷 = (𝑋 × 𝑋))
123, 11syl 17 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → dom 𝐷 = (𝑋 × 𝑋))
1310, 12sseqtr4d 3642 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (𝑦 × 𝑦) ⊆ dom 𝐷)
14 funimassov 6811 . . . . . . 7 ((Fun 𝐷 ∧ (𝑦 × 𝑦) ⊆ dom 𝐷) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
155, 13, 14syl2anc 693 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥)))
16 0xr 10086 . . . . . . . . 9 0 ∈ ℝ*
1716a1i 11 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ∈ ℝ*)
18 simpllr 799 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ+)
1918rpxrd 11873 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑥 ∈ ℝ*)
20 simp-4l 806 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝐷 ∈ (∞Met‘𝑋))
218sselda 3603 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑧𝑦) → 𝑧𝑋)
2221adantrr 753 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑧𝑋)
238sselda 3603 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ 𝑤𝑦) → 𝑤𝑋)
2423adantrl 752 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 𝑤𝑋)
25 xmetcl 22136 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → (𝑧𝐷𝑤) ∈ ℝ*)
2620, 22, 24, 25syl3anc 1326 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → (𝑧𝐷𝑤) ∈ ℝ*)
27 xmetge0 22149 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → 0 ≤ (𝑧𝐷𝑤))
2820, 22, 24, 27syl3anc 1326 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → 0 ≤ (𝑧𝐷𝑤))
29 elico1 12218 . . . . . . . . . 10 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥)))
30 df-3an 1039 . . . . . . . . . 10 (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤) ∧ (𝑧𝐷𝑤) < 𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥))
3129, 30syl6bb 276 . . . . . . . . 9 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤)) ∧ (𝑧𝐷𝑤) < 𝑥)))
3231baibd 948 . . . . . . . 8 (((0 ∈ ℝ*𝑥 ∈ ℝ*) ∧ ((𝑧𝐷𝑤) ∈ ℝ* ∧ 0 ≤ (𝑧𝐷𝑤))) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
3317, 19, 26, 28, 32syl22anc 1327 . . . . . . 7 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) ∧ (𝑧𝑦𝑤𝑦)) → ((𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ (𝑧𝐷𝑤) < 𝑥))
34332ralbidva 2988 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → (∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) ∈ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3515, 34bitrd 268 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) ∧ 𝑦𝐹) → ((𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3635rexbidva 3049 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥 ∈ ℝ+) → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∃𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3736ralbidva 2985 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥))
3837pm5.32da 673 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
391, 38bitrd 268 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹𝑧𝑦𝑤𝑦 (𝑧𝐷𝑤) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   × cxp 5112  dom cdm 5114  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  *cxr 10073   < clt 10074  cle 10075  +crp 11832  [,)cico 12177  ∞Metcxmt 19731  Filcfil 21649  CauFilccfil 23050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-xmet 19739  df-fbas 19743  df-fil 21650  df-cfil 23053
This theorem is referenced by:  cfili  23066  fgcfil  23069  iscfil3  23071  cfilresi  23093  cfilres  23094
  Copyright terms: Public domain W3C validator