![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cn1lem | Structured version Visualization version GIF version |
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
cn1lem.1 | ⊢ 𝐹:ℂ⟶ℂ |
cn1lem.2 | ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
Ref | Expression |
---|---|
cn1lem | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
2 | simpr 477 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
3 | simpll 790 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
4 | cn1lem.2 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) | |
5 | 2, 3, 4 | syl2anc 693 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
6 | cn1lem.1 | . . . . . . . . 9 ⊢ 𝐹:ℂ⟶ℂ | |
7 | 6 | ffvelrni 6358 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (𝐹‘𝑧) ∈ ℂ) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
9 | 6 | ffvelrni 6358 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) ∈ ℂ) |
10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝐴) ∈ ℂ) |
11 | 8, 10 | subcld 10392 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − (𝐹‘𝐴)) ∈ ℂ) |
12 | 11 | abscld 14175 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ) |
13 | 2, 3 | subcld 10392 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
14 | 13 | abscld 14175 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝐴)) ∈ ℝ) |
15 | rpre 11839 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
16 | 15 | ad2antlr 763 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ) |
17 | lelttr 10128 | . . . . 5 ⊢ (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ ∧ (abs‘(𝑧 − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | |
18 | 12, 14, 16, 17 | syl3anc 1326 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
19 | 5, 18 | mpand 711 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
20 | 19 | ralrimiva 2966 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
21 | breq2 4657 | . . . . 5 ⊢ (𝑦 = 𝑥 → ((abs‘(𝑧 − 𝐴)) < 𝑦 ↔ (abs‘(𝑧 − 𝐴)) < 𝑥)) | |
22 | 21 | imbi1d 331 | . . . 4 ⊢ (𝑦 = 𝑥 → (((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
23 | 22 | ralbidv 2986 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥) ↔ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥))) |
24 | 23 | rspcev 3309 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
25 | 1, 20, 24 | syl2anc 693 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 < clt 10074 ≤ cle 10075 − cmin 10266 ℝ+crp 11832 abscabs 13974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
This theorem is referenced by: abscn2 14329 cjcn2 14330 recn2 14331 imcn2 14332 |
Copyright terms: Public domain | W3C validator |