MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Structured version   Visualization version   GIF version

Theorem cnfcom2 8599
Description: Any nonzero ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5 𝑆 = dom (ω CNF 𝐴)
2 cnfcom.a . . . . 5 (𝜑𝐴 ∈ On)
3 cnfcom.b . . . . 5 (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
4 cnfcom.f . . . . 5 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.g . . . . 5 𝐺 = OrdIso( E , (𝐹 supp ∅))
6 cnfcom.h . . . . 5 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
7 cnfcom.t . . . . 5 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
8 cnfcom.m . . . . 5 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
9 cnfcom.k . . . . 5 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
10 ovex 6678 . . . . . . . . . 10 (𝐹 supp ∅) ∈ V
115oion 8441 . . . . . . . . . 10 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1210, 11ax-mp 5 . . . . . . . . 9 dom 𝐺 ∈ On
1312elexi 3213 . . . . . . . 8 dom 𝐺 ∈ V
1413uniex 6953 . . . . . . 7 dom 𝐺 ∈ V
1514sucid 5804 . . . . . 6 dom 𝐺 ∈ suc dom 𝐺
16 cnfcom.w . . . . . . 7 𝑊 = (𝐺 dom 𝐺)
17 cnfcom2.1 . . . . . . 7 (𝜑 → ∅ ∈ 𝐵)
181, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17cnfcom2lem 8598 . . . . . 6 (𝜑 → dom 𝐺 = suc dom 𝐺)
1915, 18syl5eleqr 2708 . . . . 5 (𝜑 dom 𝐺 ∈ dom 𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 19cnfcom 8597 . . . 4 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 (𝐺 dom 𝐺)) ·𝑜 (𝐹‘(𝐺 dom 𝐺))))
2116oveq2i 6661 . . . . . 6 (ω ↑𝑜 𝑊) = (ω ↑𝑜 (𝐺 dom 𝐺))
2216fveq2i 6194 . . . . . 6 (𝐹𝑊) = (𝐹‘(𝐺 dom 𝐺))
2321, 22oveq12i 6662 . . . . 5 ((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) = ((ω ↑𝑜 (𝐺 dom 𝐺)) ·𝑜 (𝐹‘(𝐺 dom 𝐺)))
24 f1oeq3 6129 . . . . 5 (((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) = ((ω ↑𝑜 (𝐺 dom 𝐺)) ·𝑜 (𝐹‘(𝐺 dom 𝐺))) → ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 (𝐺 dom 𝐺)) ·𝑜 (𝐹‘(𝐺 dom 𝐺)))))
2523, 24ax-mp 5 . . . 4 ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 (𝐺 dom 𝐺)) ·𝑜 (𝐹‘(𝐺 dom 𝐺))))
2620, 25sylibr 224 . . 3 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)))
2718fveq2d 6195 . . . 4 (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺))
28 f1oeq1 6127 . . . 4 ((𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺) → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊))))
2927, 28syl 17 . . 3 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊))))
3026, 29mpbird 247 . 2 (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)))
314fveq2i 6194 . . . . 5 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
32 omelon 8543 . . . . . . 7 ω ∈ On
3332a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
341, 33, 2cantnff1o 8593 . . . . . . . . 9 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴))
35 f1ocnv 6149 . . . . . . . . 9 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) → (ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆)
36 f1of 6137 . . . . . . . . 9 ((ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
3734, 35, 363syl 18 . . . . . . . 8 (𝜑(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
3837, 3ffvelrnd 6360 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
394, 38syl5eqel 2705 . . . . . 6 (𝜑𝐹𝑆)
408oveq1i 6660 . . . . . . . . . 10 (𝑀 +𝑜 𝑧) = (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)
4140a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +𝑜 𝑧) = (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
4241mpt2eq3ia 6720 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
43 eqid 2622 . . . . . . . 8 ∅ = ∅
44 seqomeq12 7549 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅))
4542, 43, 44mp2an 708 . . . . . . 7 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
466, 45eqtri 2644 . . . . . 6 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
471, 33, 2, 5, 39, 46cantnfval 8565 . . . . 5 (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺))
4831, 47syl5reqr 2671 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)))
4918fveq2d 6195 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc dom 𝐺))
50 f1ocnvfv2 6533 . . . . 5 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) ∧ 𝐵 ∈ (ω ↑𝑜 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5134, 3, 50syl2anc 693 . . . 4 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5248, 49, 513eqtr3d 2664 . . 3 (𝜑 → (𝐻‘suc dom 𝐺) = 𝐵)
53 f1oeq2 6128 . . 3 ((𝐻‘suc dom 𝐺) = 𝐵 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊))))
5452, 53syl 17 . 2 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)) ↔ (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊))))
5530, 54mpbid 222 1 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑𝑜 𝑊) ·𝑜 (𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  c0 3915   cuni 4436  cmpt 4729   E cep 5028  ccnv 5113  dom cdm 5114  Oncon0 5723  suc csuc 5725  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom3  8601
  Copyright terms: Public domain W3C validator