MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Structured version   Visualization version   Unicode version

Theorem cnfcom2 8599
Description: Any nonzero ordinal  B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.w  |-  W  =  ( G `  U. dom  G )
cnfcom2.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5  |-  S  =  dom  ( om CNF  A
)
2 cnfcom.a . . . . 5  |-  ( ph  ->  A  e.  On )
3 cnfcom.b . . . . 5  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
4 cnfcom.f . . . . 5  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.g . . . . 5  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
6 cnfcom.h . . . . 5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
7 cnfcom.t . . . . 5  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
8 cnfcom.m . . . . 5  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
9 cnfcom.k . . . . 5  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
10 ovex 6678 . . . . . . . . . 10  |-  ( F supp  (/) )  e.  _V
115oion 8441 . . . . . . . . . 10  |-  ( ( F supp  (/) )  e.  _V  ->  dom  G  e.  On )
1210, 11ax-mp 5 . . . . . . . . 9  |-  dom  G  e.  On
1312elexi 3213 . . . . . . . 8  |-  dom  G  e.  _V
1413uniex 6953 . . . . . . 7  |-  U. dom  G  e.  _V
1514sucid 5804 . . . . . 6  |-  U. dom  G  e.  suc  U. dom  G
16 cnfcom.w . . . . . . 7  |-  W  =  ( G `  U. dom  G )
17 cnfcom2.1 . . . . . . 7  |-  ( ph  -> 
(/)  e.  B )
181, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17cnfcom2lem 8598 . . . . . 6  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
1915, 18syl5eleqr 2708 . . . . 5  |-  ( ph  ->  U. dom  G  e. 
dom  G )
201, 2, 3, 4, 5, 6, 7, 8, 9, 19cnfcom 8597 . . . 4  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2116oveq2i 6661 . . . . . 6  |-  ( om 
^o  W )  =  ( om  ^o  ( G `  U. dom  G
) )
2216fveq2i 6194 . . . . . 6  |-  ( F `
 W )  =  ( F `  ( G `  U. dom  G
) )
2321, 22oveq12i 6662 . . . . 5  |-  ( ( om  ^o  W )  .o  ( F `  W ) )  =  ( ( om  ^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )
24 f1oeq3 6129 . . . . 5  |-  ( ( ( om  ^o  W
)  .o  ( F `
 W ) )  =  ( ( om 
^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )  -> 
( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) ) )
2523, 24ax-mp 5 . . . 4  |-  ( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  ( G `  U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2620, 25sylibr 224 . . 3  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
2718fveq2d 6195 . . . 4  |-  ( ph  ->  ( T `  dom  G )  =  ( T `
 suc  U. dom  G
) )
28 f1oeq1 6127 . . . 4  |-  ( ( T `  dom  G
)  =  ( T `
 suc  U. dom  G
)  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
2927, 28syl 17 . . 3  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) ) ) )
3026, 29mpbird 247 . 2  |-  ( ph  ->  ( T `  dom  G ) : ( H `
 suc  U. dom  G
)
-1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
) )
314fveq2i 6194 . . . . 5  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
32 omelon 8543 . . . . . . 7  |-  om  e.  On
3332a1i 11 . . . . . 6  |-  ( ph  ->  om  e.  On )
341, 33, 2cantnff1o 8593 . . . . . . . . 9  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
35 f1ocnv 6149 . . . . . . . . 9  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
36 f1of 6137 . . . . . . . . 9  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
3734, 35, 363syl 18 . . . . . . . 8  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
3837, 3ffvelrnd 6360 . . . . . . 7  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
394, 38syl5eqel 2705 . . . . . 6  |-  ( ph  ->  F  e.  S )
408oveq1i 6660 . . . . . . . . . 10  |-  ( M  +o  z )  =  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
)
4140a1i 11 . . . . . . . . 9  |-  ( ( k  e.  _V  /\  z  e.  _V )  ->  ( M  +o  z
)  =  ( ( ( om  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
4241mpt2eq3ia 6720 . . . . . . . 8  |-  ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z ) )  =  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )
43 eqid 2622 . . . . . . . 8  |-  (/)  =  (/)
44 seqomeq12 7549 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
4542, 43, 44mp2an 708 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( M  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) )
466, 45eqtri 2644 . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
471, 33, 2, 5, 39, 46cantnfval 8565 . . . . 5  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  ( H `  dom  G ) )
4831, 47syl5reqr 2671 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
) )
4918fveq2d 6195 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( H `
 suc  U. dom  G
) )
50 f1ocnvfv2 6533 . . . . 5  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
5134, 3, 50syl2anc 693 . . . 4  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5248, 49, 513eqtr3d 2664 . . 3  |-  ( ph  ->  ( H `  suc  U.
dom  G )  =  B )
53 f1oeq2 6128 . . 3  |-  ( ( H `  suc  U. dom  G )  =  B  ->  ( ( T `
 dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
5452, 53syl 17 . 2  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) ) )
5530, 54mpbid 222 1  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   Oncon0 5723   suc csuc 5725   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542    +o coa 7557    .o comu 7558    ^o coe 7559  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom3  8601
  Copyright terms: Public domain W3C validator