MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lem Structured version   Visualization version   GIF version

Theorem cnfcom2lem 8598
Description: Lemma for cnfcom2 8599. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2lem (𝜑 → dom 𝐺 = suc dom 𝐺)
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2lem
StepHypRef Expression
1 cnfcom2.1 . . . . . 6 (𝜑 → ∅ ∈ 𝐵)
2 n0i 3920 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
31, 2syl 17 . . . . 5 (𝜑 → ¬ 𝐵 = ∅)
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
6 omelon 8543 . . . . . . . . . . . . . . . . . 18 ω ∈ On
76a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
8 cnfcom.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ On)
95, 7, 8cantnff1o 8593 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴))
10 f1ocnv 6149 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) → (ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆)
11 f1of 6137 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
129, 10, 113syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
13 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
1412, 13ffvelrnd 6360 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
154, 14syl5eqel 2705 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
165, 7, 8cantnfs 8563 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1817simpld 475 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
1918adantr 481 . . . . . . . . . 10 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹:𝐴⟶ω)
2019feqmptd 6249 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
21 dif0 3950 . . . . . . . . . . . 12 (𝐴 ∖ ∅) = 𝐴
2221eleq2i 2693 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ ∅) ↔ 𝑥𝐴)
23 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 = ∅)
24 suppssdm 7308 . . . . . . . . . . . . . . . . . . . 20 (𝐹 supp ∅) ⊆ dom 𝐹
25 fdm 6051 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝐴⟶ω → dom 𝐹 = 𝐴)
2618, 25syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝐴)
2724, 26syl5sseq 3653 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
288, 27ssexd 4805 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹 supp ∅) ∈ V)
29 cnfcom.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = OrdIso( E , (𝐹 supp ∅))
305, 7, 8, 29, 15cantnfcl 8564 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
3130simpld 475 . . . . . . . . . . . . . . . . . 18 (𝜑 → E We (𝐹 supp ∅))
3229oien 8443 . . . . . . . . . . . . . . . . . 18 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → dom 𝐺 ≈ (𝐹 supp ∅))
3328, 31, 32syl2anc 693 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐺 ≈ (𝐹 supp ∅))
3433adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ dom 𝐺 = ∅) → dom 𝐺 ≈ (𝐹 supp ∅))
3523, 34eqbrtrrd 4677 . . . . . . . . . . . . . . 15 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ≈ (𝐹 supp ∅))
3635ensymd 8007 . . . . . . . . . . . . . 14 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ≈ ∅)
37 en0 8019 . . . . . . . . . . . . . 14 ((𝐹 supp ∅) ≈ ∅ ↔ (𝐹 supp ∅) = ∅)
3836, 37sylib 208 . . . . . . . . . . . . 13 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) = ∅)
39 ss0b 3973 . . . . . . . . . . . . 13 ((𝐹 supp ∅) ⊆ ∅ ↔ (𝐹 supp ∅) = ∅)
4038, 39sylibr 224 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → (𝐹 supp ∅) ⊆ ∅)
418adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐴 ∈ On)
42 0ex 4790 . . . . . . . . . . . . 13 ∅ ∈ V
4342a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ dom 𝐺 = ∅) → ∅ ∈ V)
4419, 40, 41, 43suppssr 7326 . . . . . . . . . . 11 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥 ∈ (𝐴 ∖ ∅)) → (𝐹𝑥) = ∅)
4522, 44sylan2br 493 . . . . . . . . . 10 (((𝜑 ∧ dom 𝐺 = ∅) ∧ 𝑥𝐴) → (𝐹𝑥) = ∅)
4645mpteq2dva 4744 . . . . . . . . 9 ((𝜑 ∧ dom 𝐺 = ∅) → (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ ∅))
4720, 46eqtrd 2656 . . . . . . . 8 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝑥𝐴 ↦ ∅))
48 fconstmpt 5163 . . . . . . . 8 (𝐴 × {∅}) = (𝑥𝐴 ↦ ∅)
4947, 48syl6eqr 2674 . . . . . . 7 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐹 = (𝐴 × {∅}))
5049fveq2d 6195 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(𝐴 × {∅})))
514fveq2i 6194 . . . . . . . 8 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
52 f1ocnvfv2 6533 . . . . . . . . 9 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) ∧ 𝐵 ∈ (ω ↑𝑜 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
539, 13, 52syl2anc 693 . . . . . . . 8 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5451, 53syl5eq 2668 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐹) = 𝐵)
5554adantr 481 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘𝐹) = 𝐵)
56 peano1 7085 . . . . . . . . 9 ∅ ∈ ω
5756a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ ω)
585, 7, 8, 57cantnf0 8572 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
5958adantr 481 . . . . . 6 ((𝜑 ∧ dom 𝐺 = ∅) → ((ω CNF 𝐴)‘(𝐴 × {∅})) = ∅)
6050, 55, 593eqtr3d 2664 . . . . 5 ((𝜑 ∧ dom 𝐺 = ∅) → 𝐵 = ∅)
613, 60mtand 691 . . . 4 (𝜑 → ¬ dom 𝐺 = ∅)
6230simprd 479 . . . . 5 (𝜑 → dom 𝐺 ∈ ω)
63 nnlim 7078 . . . . 5 (dom 𝐺 ∈ ω → ¬ Lim dom 𝐺)
6462, 63syl 17 . . . 4 (𝜑 → ¬ Lim dom 𝐺)
65 ioran 511 . . . 4 (¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺) ↔ (¬ dom 𝐺 = ∅ ∧ ¬ Lim dom 𝐺))
6661, 64, 65sylanbrc 698 . . 3 (𝜑 → ¬ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
6729oicl 8434 . . . 4 Ord dom 𝐺
68 unizlim 5844 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺)))
6967, 68ax-mp 5 . . 3 (dom 𝐺 = dom 𝐺 ↔ (dom 𝐺 = ∅ ∨ Lim dom 𝐺))
7066, 69sylnibr 319 . 2 (𝜑 → ¬ dom 𝐺 = dom 𝐺)
71 orduniorsuc 7030 . . . 4 (Ord dom 𝐺 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
7267, 71mp1i 13 . . 3 (𝜑 → (dom 𝐺 = dom 𝐺 ∨ dom 𝐺 = suc dom 𝐺))
7372ord 392 . 2 (𝜑 → (¬ dom 𝐺 = dom 𝐺 → dom 𝐺 = suc dom 𝐺))
7470, 73mpd 15 1 (𝜑 → dom 𝐺 = suc dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   E cep 5028   We wwe 5072   × cxp 5112  ccnv 5113  dom cdm 5114  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom2  8599  cnfcom3lem  8600  cnfcom3  8601
  Copyright terms: Public domain W3C validator