MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Visualization version   GIF version

Theorem cnmpt1k 21485
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt1k.m (𝜑𝑀 ∈ (TopOn‘𝑊))
cnmpt1k.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
cnmpt1k.b (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿)))
cnmpt1k.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt1k (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑧,𝑍,𝑦   𝑧,𝐴   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑧,𝐶   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥)   𝐵(𝑦,𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)   𝑀(𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem cnmpt1k
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmptk1.l . . . . . . 7 (𝜑𝐿 ∈ (TopOn‘𝑍))
3 cnmpt1k.a . . . . . . 7 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿))
4 cnf2 21053 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐴):𝑋𝑍)
51, 2, 3, 4syl3anc 1326 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋𝑍)
6 eqid 2622 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
76fmpt 6381 . . . . . 6 (∀𝑥𝑋 𝐴𝑍 ↔ (𝑥𝑋𝐴):𝑋𝑍)
85, 7sylibr 224 . . . . 5 (𝜑 → ∀𝑥𝑋 𝐴𝑍)
98adantr 481 . . . 4 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴𝑍)
10 eqidd 2623 . . . 4 ((𝜑𝑦𝑌) → (𝑥𝑋𝐴) = (𝑥𝑋𝐴))
11 eqidd 2623 . . . 4 ((𝜑𝑦𝑌) → (𝑧𝑍𝐵) = (𝑧𝑍𝐵))
12 cnmpt1k.c . . . 4 (𝑧 = 𝐴𝐵 = 𝐶)
139, 10, 11, 12fmptcof 6397 . . 3 ((𝜑𝑦𝑌) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)) = (𝑥𝑋𝐶))
1413mpteq2dva 4744 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) = (𝑦𝑌 ↦ (𝑥𝑋𝐶)))
15 cnmptk1.k . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
16 cnmpt1k.b . . 3 (𝜑 → (𝑦𝑌 ↦ (𝑧𝑍𝐵)) ∈ (𝐾 Cn (𝑀 ^ko 𝐿)))
17 topontop 20718 . . . . 5 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
182, 17syl 17 . . . 4 (𝜑𝐿 ∈ Top)
19 cnmpt1k.m . . . . 5 (𝜑𝑀 ∈ (TopOn‘𝑊))
20 topontop 20718 . . . . 5 (𝑀 ∈ (TopOn‘𝑊) → 𝑀 ∈ Top)
2119, 20syl 17 . . . 4 (𝜑𝑀 ∈ Top)
22 eqid 2622 . . . . 5 (𝑀 ^ko 𝐿) = (𝑀 ^ko 𝐿)
2322xkotopon 21403 . . . 4 ((𝐿 ∈ Top ∧ 𝑀 ∈ Top) → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2418, 21, 23syl2anc 693 . . 3 (𝜑 → (𝑀 ^ko 𝐿) ∈ (TopOn‘(𝐿 Cn 𝑀)))
2521, 3xkoco1cn 21460 . . 3 (𝜑 → (𝑤 ∈ (𝐿 Cn 𝑀) ↦ (𝑤 ∘ (𝑥𝑋𝐴))) ∈ ((𝑀 ^ko 𝐿) Cn (𝑀 ^ko 𝐽)))
26 coeq1 5279 . . 3 (𝑤 = (𝑧𝑍𝐵) → (𝑤 ∘ (𝑥𝑋𝐴)) = ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴)))
2715, 16, 24, 25, 26cnmpt11 21466 . 2 (𝜑 → (𝑦𝑌 ↦ ((𝑧𝑍𝐵) ∘ (𝑥𝑋𝐴))) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
2814, 27eqeltrrd 2702 1 (𝜑 → (𝑦𝑌 ↦ (𝑥𝑋𝐶)) ∈ (𝐾 Cn (𝑀 ^ko 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cmpt 4729  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-xko 21366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator