MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1k Structured version   Visualization version   Unicode version

Theorem cnmpt1k 21485
Description: The composition of a one-arg function with a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptk1.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptk1.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt1k.m  |-  ( ph  ->  M  e.  (TopOn `  W ) )
cnmpt1k.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
cnmpt1k.b  |-  ( ph  ->  ( y  e.  Y  |->  ( z  e.  Z  |->  B ) )  e.  ( K  Cn  ( M  ^ko  L ) ) )
cnmpt1k.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt1k  |-  ( ph  ->  ( y  e.  Y  |->  ( x  e.  X  |->  C ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, z, Z, y   
z, A    x, B    ph, x, y    x, X, y    x, Y, y   
z, C    y, A
Allowed substitution hints:    ph( z)    A( x)    B( y, z)    C( x, y)    J( z)    K( z)    L( z)    M( z)    W( x, y, z)    X( z)    Y( z)

Proof of Theorem cnmpt1k
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.j . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptk1.l . . . . . . 7  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
3 cnmpt1k.a . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )
4 cnf2 21053 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )  ->  ( x  e.  X  |->  A ) : X --> Z )
51, 2, 3, 4syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> Z )
6 eqid 2622 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
76fmpt 6381 . . . . . 6  |-  ( A. x  e.  X  A  e.  Z  <->  ( x  e.  X  |->  A ) : X --> Z )
85, 7sylibr 224 . . . . 5  |-  ( ph  ->  A. x  e.  X  A  e.  Z )
98adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  A. x  e.  X  A  e.  Z )
10 eqidd 2623 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  (
x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
11 eqidd 2623 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  (
z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B ) )
12 cnmpt1k.c . . . 4  |-  ( z  =  A  ->  B  =  C )
139, 10, 11, 12fmptcof 6397 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  C ) )
1413mpteq2dva 4744 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X  |->  A ) ) )  =  ( y  e.  Y  |->  ( x  e.  X  |->  C ) ) )
15 cnmptk1.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
16 cnmpt1k.b . . 3  |-  ( ph  ->  ( y  e.  Y  |->  ( z  e.  Z  |->  B ) )  e.  ( K  Cn  ( M  ^ko  L ) ) )
17 topontop 20718 . . . . 5  |-  ( L  e.  (TopOn `  Z
)  ->  L  e.  Top )
182, 17syl 17 . . . 4  |-  ( ph  ->  L  e.  Top )
19 cnmpt1k.m . . . . 5  |-  ( ph  ->  M  e.  (TopOn `  W ) )
20 topontop 20718 . . . . 5  |-  ( M  e.  (TopOn `  W
)  ->  M  e.  Top )
2119, 20syl 17 . . . 4  |-  ( ph  ->  M  e.  Top )
22 eqid 2622 . . . . 5  |-  ( M  ^ko  L )  =  ( M  ^ko  L )
2322xkotopon 21403 . . . 4  |-  ( ( L  e.  Top  /\  M  e.  Top )  ->  ( M  ^ko  L )  e.  (TopOn `  ( L  Cn  M
) ) )
2418, 21, 23syl2anc 693 . . 3  |-  ( ph  ->  ( M  ^ko  L )  e.  (TopOn `  ( L  Cn  M
) ) )
2521, 3xkoco1cn 21460 . . 3  |-  ( ph  ->  ( w  e.  ( L  Cn  M ) 
|->  ( w  o.  (
x  e.  X  |->  A ) ) )  e.  ( ( M  ^ko  L )  Cn  ( M  ^ko  J ) ) )
26 coeq1 5279 . . 3  |-  ( w  =  ( z  e.  Z  |->  B )  -> 
( w  o.  (
x  e.  X  |->  A ) )  =  ( ( z  e.  Z  |->  B )  o.  (
x  e.  X  |->  A ) ) )
2715, 16, 24, 25, 26cnmpt11 21466 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X  |->  A ) ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
2814, 27eqeltrrd 2702 1  |-  ( ph  ->  ( y  e.  Y  |->  ( x  e.  X  |->  C ) )  e.  ( K  Cn  ( M  ^ko  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    |-> cmpt 4729    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-xko 21366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator