MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem2 Structured version   Visualization version   GIF version

Theorem colinearalglem2 25787
Description: Lemma for colinearalg 25790. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.)
Assertion
Ref Expression
colinearalglem2 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗

Proof of Theorem colinearalglem2
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2 simpl 473 . . . 4 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
3 fveecn 25782 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℂ)
41, 2, 3syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐴𝑖) ∈ ℂ)
5 simp2 1062 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
6 fveecn 25782 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐵𝑖) ∈ ℂ)
75, 2, 6syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐵𝑖) ∈ ℂ)
8 simp3 1063 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
9 fveecn 25782 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℂ)
108, 2, 9syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐶𝑖) ∈ ℂ)
11 simpr 477 . . . 4 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
12 fveecn 25782 . . . 4 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐴𝑗) ∈ ℂ)
131, 11, 12syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐴𝑗) ∈ ℂ)
14 fveecn 25782 . . . 4 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐵𝑗) ∈ ℂ)
155, 11, 14syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐵𝑗) ∈ ℂ)
16 fveecn 25782 . . . 4 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝐶𝑗) ∈ ℂ)
178, 11, 16syl2an 494 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝐶𝑗) ∈ ℂ)
18 simp1 1061 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐴𝑖) ∈ ℂ)
19 simp3 1063 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐶𝑗) ∈ ℂ)
20 mulcl 10020 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐴𝑖) · (𝐶𝑗)) ∈ ℂ)
2118, 19, 20syl2an 494 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐴𝑖) · (𝐶𝑗)) ∈ ℂ)
22 simp2 1062 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐵𝑖) ∈ ℂ)
23 simp1 1061 . . . . . . . . . . . 12 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐴𝑗) ∈ ℂ)
24 mulcl 10020 . . . . . . . . . . . 12 (((𝐵𝑖) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((𝐵𝑖) · (𝐴𝑗)) ∈ ℂ)
2522, 23, 24syl2an 494 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐵𝑖) · (𝐴𝑗)) ∈ ℂ)
2621, 25addcld 10059 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) ∈ ℂ)
27 mulcl 10020 . . . . . . . . . . 11 (((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ)
2822, 19, 27syl2an 494 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ)
2926, 28subcld 10392 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) ∈ ℂ)
30 simp2 1062 . . . . . . . . . 10 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) → (𝐵𝑗) ∈ ℂ)
31 mulcl 10020 . . . . . . . . . 10 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐴𝑖) · (𝐵𝑗)) ∈ ℂ)
3218, 30, 31syl2an 494 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐴𝑖) · (𝐵𝑗)) ∈ ℂ)
33 simp3 1063 . . . . . . . . . . 11 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) → (𝐶𝑖) ∈ ℂ)
34 mulcl 10020 . . . . . . . . . . 11 (((𝐶𝑖) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ) → ((𝐶𝑖) · (𝐴𝑗)) ∈ ℂ)
3533, 23, 34syl2an 494 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐶𝑖) · (𝐴𝑗)) ∈ ℂ)
36 mulcl 10020 . . . . . . . . . . 11 (((𝐶𝑖) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ) → ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)
3733, 30, 36syl2an 494 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)
3835, 37subcld 10392 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ∈ ℂ)
3929, 32, 38subadd2d 10411 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗)))))
40 eqcom 2629 . . . . . . . 8 (((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))))
4139, 40syl6bb 276 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗)))))
4235, 32, 37addsubd 10413 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))))
4335, 32addcomd 10238 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) = (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))
4443oveq1d 6665 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
4542, 44eqtr3d 2658 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
4645eqeq2d 2632 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) + ((𝐴𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗)))))
4741, 46bitrd 268 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗)))))
4826, 28, 32subsub4d 10423 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
4928, 32addcld 10059 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) ∈ ℂ)
5021, 49, 25subsub3d 10422 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = ((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
5128, 25, 32subsub3d 10422 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))))
5251eqcomd 2628 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5352oveq2d 6666 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))))))
5425, 32subcld 10392 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))) ∈ ℂ)
5521, 28, 54subsubd 10420 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗))))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5653, 55eqtrd 2656 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5748, 50, 563eqtr2d 2662 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))))
5821, 28subcld 10392 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) ∈ ℂ)
5958, 25, 32addsub12d 10415 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐵𝑖) · (𝐴𝑗)) + ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗)))))
6021, 28, 32subsub4d 10423 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
6160oveq2d 6666 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐵𝑖) · (𝐴𝑗)) + ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
6259, 61eqtrd 2656 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − ((𝐵𝑖) · (𝐶𝑗))) + (((𝐵𝑖) · (𝐴𝑗)) − ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
6357, 62eqtrd 2656 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
6463eqeq1d 2624 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) − ((𝐴𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗)))))
6532, 35addcld 10059 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) ∈ ℂ)
66 subeqrev 10453 . . . . . . 7 ((((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) ∈ ℂ ∧ ((𝐵𝑖) · (𝐶𝑗)) ∈ ℂ) ∧ ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) ∈ ℂ ∧ ((𝐶𝑖) · (𝐵𝑗)) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
6726, 28, 65, 37, 66syl22anc 1327 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗))) − ((𝐵𝑖) · (𝐶𝑗))) = ((((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
6847, 64, 673bitr3rd 299 . . . . 5 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗)))) ↔ (((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗)))))
6921, 49subcld 10392 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) ∈ ℂ)
7025, 69, 38addrsub 10448 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗)))))
7135, 37, 25sub32d 10424 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐵𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))))
7235, 25, 37subsub4d 10423 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐵𝑖) · (𝐴𝑗))) − ((𝐶𝑖) · (𝐵𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))))
7371, 72eqtrd 2656 . . . . . . . 8 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))))
7473eqeq2d 2632 . . . . . . 7 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = ((((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) − ((𝐵𝑖) · (𝐴𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗))))))
7570, 74bitrd 268 . . . . . 6 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗))))))
76 eqcom 2629 . . . . . 6 ((((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))) = (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗)))))
7775, 76syl6bb 276 . . . . 5 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐴𝑗)) + (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))) = (((𝐶𝑖) · (𝐴𝑗)) − ((𝐶𝑖) · (𝐵𝑗))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
7868, 77bitrd 268 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗)))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
79 colinearalglem1 25786 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐵𝑖) · (𝐶𝑗)) − (((𝐴𝑖) · (𝐶𝑗)) + ((𝐵𝑖) · (𝐴𝑗)))) = (((𝐶𝑖) · (𝐵𝑗)) − (((𝐴𝑖) · (𝐵𝑗)) + ((𝐶𝑖) · (𝐴𝑗))))))
80 3anrot 1043 . . . . 5 (((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ↔ ((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ))
81 3anrot 1043 . . . . 5 (((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ) ↔ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ))
82 colinearalglem1 25786 . . . . 5 ((((𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ ∧ (𝐴𝑖) ∈ ℂ) ∧ ((𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ ∧ (𝐴𝑗) ∈ ℂ)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
8380, 81, 82syl2anb 496 . . . 4 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖))) ↔ (((𝐶𝑖) · (𝐴𝑗)) − (((𝐵𝑖) · (𝐴𝑗)) + ((𝐶𝑖) · (𝐵𝑗)))) = (((𝐴𝑖) · (𝐶𝑗)) − (((𝐵𝑖) · (𝐶𝑗)) + ((𝐴𝑖) · (𝐵𝑗))))))
8478, 79, 833bitr4d 300 . . 3 ((((𝐴𝑖) ∈ ℂ ∧ (𝐵𝑖) ∈ ℂ ∧ (𝐶𝑖) ∈ ℂ) ∧ ((𝐴𝑗) ∈ ℂ ∧ (𝐵𝑗) ∈ ℂ ∧ (𝐶𝑗) ∈ ℂ)) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
854, 7, 10, 13, 15, 17, 84syl33anc 1341 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → ((((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ (((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
86852ralbidva 2988 1 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → (∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐵𝑖) − (𝐴𝑖)) · ((𝐶𝑗) − (𝐴𝑗))) = (((𝐵𝑗) − (𝐴𝑗)) · ((𝐶𝑖) − (𝐴𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)∀𝑗 ∈ (1...𝑁)(((𝐶𝑖) − (𝐵𝑖)) · ((𝐴𝑗) − (𝐵𝑗))) = (((𝐶𝑗) − (𝐵𝑗)) · ((𝐴𝑖) − (𝐵𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  ...cfz 12326  𝔼cee 25768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-ee 25771
This theorem is referenced by:  colinearalglem3  25788  colinearalg  25790
  Copyright terms: Public domain W3C validator