![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subsubd | Structured version Visualization version GIF version |
Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
subaddd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
subsubd | ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subaddd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | subsub 10311 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | |
5 | 1, 2, 3, 4 | syl3anc 1326 | 1 ⊢ (𝜑 → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 + caddc 9939 − cmin 10266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 |
This theorem is referenced by: uzsubsubfz 12363 bcm1k 13102 crre 13854 imval2 13891 cvgcmp 14548 arisum2 14593 mertenslem1 14616 binomfallfaclem2 14771 fallfacval4 14774 bpolydiflem 14785 bpoly3 14789 bpoly4 14790 cos01bnd 14916 prmdiv 15490 vfermltlALT 15507 dvle 23770 dvfsumlem2 23790 efif1olem2 24289 affineequiv 24553 heron 24565 dquart 24580 quartlem1 24584 acosneg 24614 efiatan2 24644 atans2 24658 birthdaylem2 24679 lgamcvg2 24781 wilthlem2 24795 basellem5 24811 gausslemma2dlem1a 25090 pntrlog2bndlem4 25269 pntrlog2bndlem5 25270 pntrlog2bndlem6 25272 colinearalglem2 25787 axsegconlem9 25805 clwlkclwwlklem2a1 26893 clwlkclwwlklem2a4 26898 clwwlksext2edg 26923 extwwlkfablem1 27207 numclwlk1lem2foalem 27222 subfacp1lem5 31166 poimirlem29 33438 itg2addnclem 33461 itg2addnclem3 33463 rmspecsqrtnq 37470 rmspecsqrtnqOLD 37471 sub31 39503 infleinflem2 39587 stoweidlem26 40243 fourierdlem19 40343 fourierdlem63 40386 fourierdlem107 40430 ovolval5lem1 40866 fmtnorec4 41461 |
Copyright terms: Public domain | W3C validator |