| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > colinearalglem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for colinearalg 25790. Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| colinearalglem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . 4
| |
| 2 | simpl 473 |
. . . 4
| |
| 3 | fveecn 25782 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
|
| 5 | simp2 1062 |
. . . 4
| |
| 6 | fveecn 25782 |
. . . 4
| |
| 7 | 5, 2, 6 | syl2an 494 |
. . 3
|
| 8 | simp3 1063 |
. . . 4
| |
| 9 | fveecn 25782 |
. . . 4
| |
| 10 | 8, 2, 9 | syl2an 494 |
. . 3
|
| 11 | simpr 477 |
. . . 4
| |
| 12 | fveecn 25782 |
. . . 4
| |
| 13 | 1, 11, 12 | syl2an 494 |
. . 3
|
| 14 | fveecn 25782 |
. . . 4
| |
| 15 | 5, 11, 14 | syl2an 494 |
. . 3
|
| 16 | fveecn 25782 |
. . . 4
| |
| 17 | 8, 11, 16 | syl2an 494 |
. . 3
|
| 18 | simp1 1061 |
. . . . . . . . . . . 12
| |
| 19 | simp3 1063 |
. . . . . . . . . . . 12
| |
| 20 | mulcl 10020 |
. . . . . . . . . . . 12
| |
| 21 | 18, 19, 20 | syl2an 494 |
. . . . . . . . . . 11
|
| 22 | simp2 1062 |
. . . . . . . . . . . 12
| |
| 23 | simp1 1061 |
. . . . . . . . . . . 12
| |
| 24 | mulcl 10020 |
. . . . . . . . . . . 12
| |
| 25 | 22, 23, 24 | syl2an 494 |
. . . . . . . . . . 11
|
| 26 | 21, 25 | addcld 10059 |
. . . . . . . . . 10
|
| 27 | mulcl 10020 |
. . . . . . . . . . 11
| |
| 28 | 22, 19, 27 | syl2an 494 |
. . . . . . . . . 10
|
| 29 | 26, 28 | subcld 10392 |
. . . . . . . . 9
|
| 30 | simp2 1062 |
. . . . . . . . . 10
| |
| 31 | mulcl 10020 |
. . . . . . . . . 10
| |
| 32 | 18, 30, 31 | syl2an 494 |
. . . . . . . . 9
|
| 33 | simp3 1063 |
. . . . . . . . . . 11
| |
| 34 | mulcl 10020 |
. . . . . . . . . . 11
| |
| 35 | 33, 23, 34 | syl2an 494 |
. . . . . . . . . 10
|
| 36 | mulcl 10020 |
. . . . . . . . . . 11
| |
| 37 | 33, 30, 36 | syl2an 494 |
. . . . . . . . . 10
|
| 38 | 35, 37 | subcld 10392 |
. . . . . . . . 9
|
| 39 | 29, 32, 38 | subadd2d 10411 |
. . . . . . . 8
|
| 40 | eqcom 2629 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl6bb 276 |
. . . . . . 7
|
| 42 | 35, 32, 37 | addsubd 10413 |
. . . . . . . . 9
|
| 43 | 35, 32 | addcomd 10238 |
. . . . . . . . . 10
|
| 44 | 43 | oveq1d 6665 |
. . . . . . . . 9
|
| 45 | 42, 44 | eqtr3d 2658 |
. . . . . . . 8
|
| 46 | 45 | eqeq2d 2632 |
. . . . . . 7
|
| 47 | 41, 46 | bitrd 268 |
. . . . . 6
|
| 48 | 26, 28, 32 | subsub4d 10423 |
. . . . . . . . 9
|
| 49 | 28, 32 | addcld 10059 |
. . . . . . . . . 10
|
| 50 | 21, 49, 25 | subsub3d 10422 |
. . . . . . . . 9
|
| 51 | 28, 25, 32 | subsub3d 10422 |
. . . . . . . . . . . 12
|
| 52 | 51 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 53 | 52 | oveq2d 6666 |
. . . . . . . . . 10
|
| 54 | 25, 32 | subcld 10392 |
. . . . . . . . . . 11
|
| 55 | 21, 28, 54 | subsubd 10420 |
. . . . . . . . . 10
|
| 56 | 53, 55 | eqtrd 2656 |
. . . . . . . . 9
|
| 57 | 48, 50, 56 | 3eqtr2d 2662 |
. . . . . . . 8
|
| 58 | 21, 28 | subcld 10392 |
. . . . . . . . . 10
|
| 59 | 58, 25, 32 | addsub12d 10415 |
. . . . . . . . 9
|
| 60 | 21, 28, 32 | subsub4d 10423 |
. . . . . . . . . 10
|
| 61 | 60 | oveq2d 6666 |
. . . . . . . . 9
|
| 62 | 59, 61 | eqtrd 2656 |
. . . . . . . 8
|
| 63 | 57, 62 | eqtrd 2656 |
. . . . . . 7
|
| 64 | 63 | eqeq1d 2624 |
. . . . . 6
|
| 65 | 32, 35 | addcld 10059 |
. . . . . . 7
|
| 66 | subeqrev 10453 |
. . . . . . 7
| |
| 67 | 26, 28, 65, 37, 66 | syl22anc 1327 |
. . . . . 6
|
| 68 | 47, 64, 67 | 3bitr3rd 299 |
. . . . 5
|
| 69 | 21, 49 | subcld 10392 |
. . . . . . . 8
|
| 70 | 25, 69, 38 | addrsub 10448 |
. . . . . . 7
|
| 71 | 35, 37, 25 | sub32d 10424 |
. . . . . . . . 9
|
| 72 | 35, 25, 37 | subsub4d 10423 |
. . . . . . . . 9
|
| 73 | 71, 72 | eqtrd 2656 |
. . . . . . . 8
|
| 74 | 73 | eqeq2d 2632 |
. . . . . . 7
|
| 75 | 70, 74 | bitrd 268 |
. . . . . 6
|
| 76 | eqcom 2629 |
. . . . . 6
| |
| 77 | 75, 76 | syl6bb 276 |
. . . . 5
|
| 78 | 68, 77 | bitrd 268 |
. . . 4
|
| 79 | colinearalglem1 25786 |
. . . 4
| |
| 80 | 3anrot 1043 |
. . . . 5
| |
| 81 | 3anrot 1043 |
. . . . 5
| |
| 82 | colinearalglem1 25786 |
. . . . 5
| |
| 83 | 80, 81, 82 | syl2anb 496 |
. . . 4
|
| 84 | 78, 79, 83 | 3bitr4d 300 |
. . 3
|
| 85 | 4, 7, 10, 13, 15, 17, 84 | syl33anc 1341 |
. 2
|
| 86 | 85 | 2ralbidva 2988 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-sub 10268 df-neg 10269 df-ee 25771 |
| This theorem is referenced by: colinearalglem3 25788 colinearalg 25790 |
| Copyright terms: Public domain | W3C validator |