Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsf1o Structured version   Visualization version   Unicode version

Theorem cvmsf1o 31254
Description:  F, localized to an element of an even covering of  U, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
Assertion
Ref Expression
cvmsf1o  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A ) : A -1-1-onto-> U )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    U, k, s, u, v    T, s, u, v    u, A, v
Allowed substitution hints:    A( k, s)    S( v, u, k, s)    T( k)

Proof of Theorem cvmsf1o
StepHypRef Expression
1 cvmtop1 31242 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
213ad2ant1 1082 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  C  e.  Top )
3 eqid 2622 . . . . 5  |-  U. C  =  U. C
43toptopon 20722 . . . 4  |-  ( C  e.  Top  <->  C  e.  (TopOn `  U. C ) )
52, 4sylib 208 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  C  e.  (TopOn `  U. C ) )
6 cvmcov.1 . . . . . . 7  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
76cvmsss 31249 . . . . . 6  |-  ( T  e.  ( S `  U )  ->  T  C_  C )
873ad2ant2 1083 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  T  C_  C )
9 simp3 1063 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  e.  T )
108, 9sseldd 3604 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  e.  C )
11 elssuni 4467 . . . 4  |-  ( A  e.  C  ->  A  C_ 
U. C )
1210, 11syl 17 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  A  C_ 
U. C )
13 resttopon 20965 . . 3  |-  ( ( C  e.  (TopOn `  U. C )  /\  A  C_ 
U. C )  -> 
( Ct  A )  e.  (TopOn `  A ) )
145, 12, 13syl2anc 693 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( Ct  A )  e.  (TopOn `  A ) )
15 cvmtop2 31243 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  J  e.  Top )
16153ad2ant1 1082 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  J  e.  Top )
17 eqid 2622 . . . . 5  |-  U. J  =  U. J
1817toptopon 20722 . . . 4  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1916, 18sylib 208 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  J  e.  (TopOn `  U. J ) )
206cvmsrcl 31246 . . . . 5  |-  ( T  e.  ( S `  U )  ->  U  e.  J )
21203ad2ant2 1083 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  U  e.  J )
22 elssuni 4467 . . . 4  |-  ( U  e.  J  ->  U  C_ 
U. J )
2321, 22syl 17 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  U  C_ 
U. J )
24 resttopon 20965 . . 3  |-  ( ( J  e.  (TopOn `  U. J )  /\  U  C_ 
U. J )  -> 
( Jt  U )  e.  (TopOn `  U ) )
2519, 23, 24syl2anc 693 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( Jt  U )  e.  (TopOn `  U ) )
266cvmshmeo 31253 . . 3  |-  ( ( T  e.  ( S `
 U )  /\  A  e.  T )  ->  ( F  |`  A )  e.  ( ( Ct  A ) Homeo ( Jt  U ) ) )
27263adant1 1079 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A )  e.  ( ( Ct  A )
Homeo ( Jt  U ) ) )
28 hmeof1o2 21566 . 2  |-  ( ( ( Ct  A )  e.  (TopOn `  A )  /\  ( Jt  U )  e.  (TopOn `  U )  /\  ( F  |`  A )  e.  ( ( Ct  A )
Homeo ( Jt  U ) ) )  ->  ( F  |`  A ) : A -1-1-onto-> U
)
2914, 25, 27, 28syl3anc 1326 1  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  U
)  /\  A  e.  T )  ->  ( F  |`  A ) : A -1-1-onto-> U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   "cima 5117   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   Homeochmeo 21556   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-hmeo 21558  df-cvm 31238
This theorem is referenced by:  cvmsss2  31256  cvmfolem  31261  cvmliftmolem1  31263  cvmliftlem6  31272  cvmliftlem9  31275  cvmlift2lem9a  31285
  Copyright terms: Public domain W3C validator