![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrval | Structured version Visualization version GIF version |
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
dgrval.1 | ⊢ 𝐴 = (coeff‘𝐹) |
Ref | Expression |
---|---|
dgrval | ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 23956 | . . 3 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3599 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | fveq2 6191 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) | |
4 | dgrval.1 | . . . . . . 7 ⊢ 𝐴 = (coeff‘𝐹) | |
5 | 3, 4 | syl6eqr 2674 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴) |
6 | 5 | cnveqd 5298 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡(coeff‘𝑓) = ◡𝐴) |
7 | 6 | imaeq1d 5465 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡(coeff‘𝑓) “ (ℂ ∖ {0})) = (◡𝐴 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 8352 | . . 3 ⊢ (𝑓 = 𝐹 → sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | df-dgr 23947 | . . 3 ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < )) | |
10 | nn0ssre 11296 | . . . . 5 ⊢ ℕ0 ⊆ ℝ | |
11 | ltso 10118 | . . . . 5 ⊢ < Or ℝ | |
12 | soss 5053 | . . . . 5 ⊢ (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0)) | |
13 | 10, 11, 12 | mp2 9 | . . . 4 ⊢ < Or ℕ0 |
14 | 13 | supex 8369 | . . 3 ⊢ sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V |
15 | 8, 9, 14 | fvmpt 6282 | . 2 ⊢ (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
16 | 2, 15 | syl 17 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 Or wor 5034 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 supcsup 8346 ℂcc 9934 ℝcr 9935 0cc0 9936 < clt 10074 ℕ0cn0 11292 Polycply 23940 coeffccoe 23942 degcdgr 23943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-ltxr 10079 df-nn 11021 df-n0 11293 df-ply 23944 df-dgr 23947 |
This theorem is referenced by: dgrcl 23989 dgrub 23990 dgrlb 23992 coe11 24009 |
Copyright terms: Public domain | W3C validator |