![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe11 | Structured version Visualization version GIF version |
Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
coefv0.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coeadd.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coe11 | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . 3 ⊢ (𝐹 = 𝐺 → (coeff‘𝐹) = (coeff‘𝐺)) | |
2 | coefv0.1 | . . 3 ⊢ 𝐴 = (coeff‘𝐹) | |
3 | coeadd.2 | . . 3 ⊢ 𝐵 = (coeff‘𝐺) | |
4 | 1, 2, 3 | 3eqtr4g 2681 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐵) |
5 | simp3 1063 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
6 | 5 | cnveqd 5298 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → ◡𝐴 = ◡𝐵) |
7 | 6 | imaeq1d 5465 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (◡𝐴 “ (ℂ ∖ {0})) = (◡𝐵 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 8352 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | 2 | dgrval 23984 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
10 | 9 | 3ad2ant1 1082 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
11 | 3 | dgrval 23984 | . . . . . . . . 9 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
12 | 11 | 3ad2ant2 1083 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
13 | 8, 10, 12 | 3eqtr4d 2666 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = (deg‘𝐺)) |
14 | 13 | oveq2d 6666 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (0...(deg‘𝐹)) = (0...(deg‘𝐺))) |
15 | simpl3 1066 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → 𝐴 = 𝐵) | |
16 | 15 | fveq1d 6193 | . . . . . . 7 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (𝐴‘𝑘) = (𝐵‘𝑘)) |
17 | 16 | oveq1d 6665 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
18 | 14, 17 | sumeq12dv 14437 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘))) |
19 | 18 | mpteq2dv 4745 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
20 | eqid 2622 | . . . . . 6 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
21 | 2, 20 | coeid 23994 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
22 | 21 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
23 | eqid 2622 | . . . . . 6 ⊢ (deg‘𝐺) = (deg‘𝐺) | |
24 | 3, 23 | coeid 23994 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
25 | 24 | 3ad2ant2 1083 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
26 | 19, 22, 25 | 3eqtr4d 2666 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) |
27 | 26 | 3expia 1267 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 = 𝐵 → 𝐹 = 𝐺)) |
28 | 4, 27 | impbid2 216 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 {csn 4177 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 (class class class)co 6650 supcsup 8346 ℂcc 9934 0cc0 9936 · cmul 9941 < clt 10074 ℕ0cn0 11292 ...cfz 12326 ↑cexp 12860 Σcsu 14416 Polycply 23940 coeffccoe 23942 degcdgr 23943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-0p 23437 df-ply 23944 df-coe 23946 df-dgr 23947 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |