MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   Unicode version

Theorem dgrval 23984
Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1  |-  A  =  (coeff `  F )
Assertion
Ref Expression
dgrval  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  =  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )

Proof of Theorem dgrval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 plyssc 23956 . . 3  |-  (Poly `  S )  C_  (Poly `  CC )
21sseli 3599 . 2  |-  ( F  e.  (Poly `  S
)  ->  F  e.  (Poly `  CC ) )
3 fveq2 6191 . . . . . . 7  |-  ( f  =  F  ->  (coeff `  f )  =  (coeff `  F ) )
4 dgrval.1 . . . . . . 7  |-  A  =  (coeff `  F )
53, 4syl6eqr 2674 . . . . . 6  |-  ( f  =  F  ->  (coeff `  f )  =  A )
65cnveqd 5298 . . . . 5  |-  ( f  =  F  ->  `' (coeff `  f )  =  `' A )
76imaeq1d 5465 . . . 4  |-  ( f  =  F  ->  ( `' (coeff `  f ) " ( CC  \  { 0 } ) )  =  ( `' A " ( CC 
\  { 0 } ) ) )
87supeq1d 8352 . . 3  |-  ( f  =  F  ->  sup ( ( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  )  =  sup ( ( `' A " ( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
9 df-dgr 23947 . . 3  |- deg  =  ( f  e.  (Poly `  CC )  |->  sup (
( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )
10 nn0ssre 11296 . . . . 5  |-  NN0  C_  RR
11 ltso 10118 . . . . 5  |-  <  Or  RR
12 soss 5053 . . . . 5  |-  ( NN0  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN0 ) )
1310, 11, 12mp2 9 . . . 4  |-  <  Or  NN0
1413supex 8369 . . 3  |-  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  )  e.  _V
158, 9, 14fvmpt 6282 . 2  |-  ( F  e.  (Poly `  CC )  ->  (deg `  F
)  =  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
162, 15syl 17 1  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  =  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   {csn 4177    Or wor 5034   `'ccnv 5113   "cima 5117   ` cfv 5888   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    < clt 10074   NN0cn0 11292  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-nn 11021  df-n0 11293  df-ply 23944  df-dgr 23947
This theorem is referenced by:  dgrcl  23989  dgrub  23990  dgrlb  23992  coe11  24009
  Copyright terms: Public domain W3C validator