MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprmex Structured version   Visualization version   GIF version

Theorem divgcdcoprmex 15380
Description: Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprmex ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑎,𝑏

Proof of Theorem divgcdcoprmex
StepHypRef Expression
1 simpl 473 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
21anim2i 593 . . . 4 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
3 zeqzmulgcd 15232 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
42, 3syl 17 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
543adant3 1081 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
6 zeqzmulgcd 15232 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
76adantlr 751 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝐴 ∈ ℤ) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
87ancoms 469 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
983adant3 1081 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
10 reeanv 3107 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ (∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
11 zcn 11382 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
1211adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℂ)
13 gcdcl 15228 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
142, 13syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℕ0)
1514nn0cnd 11353 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ∈ ℂ)
16153adant3 1081 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
1716adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
1812, 17mulcomd 10061 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑎))
19 simp3 1063 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝑀 = (𝐴 gcd 𝐵))
2019eqcomd 2628 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = 𝑀)
2120oveq1d 6665 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2221adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑎) = (𝑀 · 𝑎))
2318, 22eqtrd 2656 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
2423ad2antrr 762 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎))
25 eqeq1 2626 . . . . . . . . . 10 (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2625adantr 481 . . . . . . . . 9 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2726adantl 482 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ↔ (𝑎 · (𝐴 gcd 𝐵)) = (𝑀 · 𝑎)))
2824, 27mpbird 247 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐴 = (𝑀 · 𝑎))
29 simpr 477 . . . . . . . 8 ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))
302ancomd 467 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
31 gcdcom 15235 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3230, 31syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
33323adant3 1081 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐵 gcd 𝐴) = (𝐴 gcd 𝐵))
3433oveq2d 6666 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
3534adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑏 · (𝐴 gcd 𝐵)))
36 zcn 11382 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3736adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
38143adant3 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
3938adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
4039nn0cnd 11353 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
4137, 40mulcomd 10061 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = ((𝐴 gcd 𝐵) · 𝑏))
4220adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = 𝑀)
4342oveq1d 6665 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) · 𝑏) = (𝑀 · 𝑏))
4435, 41, 433eqtrd 2660 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4544adantlr 751 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐵 gcd 𝐴)) = (𝑀 · 𝑏))
4629, 45sylan9eqr 2678 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → 𝐵 = (𝑀 · 𝑏))
47 zcn 11382 . . . . . . . . . . . . . 14 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
48473ad2ant1 1082 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℂ)
4948ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐴 ∈ ℂ)
5012adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
51 simp1 1061 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐴 ∈ ℤ)
5213ad2ant2 1083 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℤ)
5351, 52gcdcld 15230 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5453nn0cnd 11353 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ∈ ℂ)
5554ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
56 gcdeq0 15238 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
57 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐴 = 0 ∧ 𝐵 = 0) → 𝐵 = 0)
5856, 57syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 → 𝐵 = 0))
5958necon3d 2815 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ≠ 0 → (𝐴 gcd 𝐵) ≠ 0))
6059impr 649 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 gcd 𝐵) ≠ 0)
61603adant3 1081 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) ≠ 0)
6261ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) ≠ 0)
6349, 50, 55, 62divmul3d 10835 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
6463bicomd 213 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎))
65 zcn 11382 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
6665adantr 481 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
67663ad2ant2 1083 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → 𝐵 ∈ ℂ)
6867ad2antrr 762 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝐵 ∈ ℂ)
6936adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
7068, 69, 55, 62divmul3d 10835 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
7123adant3 1081 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
72 gcdcom 15235 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7371, 72syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7473ad2antrr 762 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
7574oveq2d 6666 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝑏 · (𝐴 gcd 𝐵)) = (𝑏 · (𝐵 gcd 𝐴)))
7675eqeq2d 2632 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐴 gcd 𝐵)) ↔ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))))
7770, 76bitr2d 269 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (𝐵 = (𝑏 · (𝐵 gcd 𝐴)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏))
7864, 77anbi12d 747 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) ↔ ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)))
79 3anass 1042 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ↔ (𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)))
8079biimpri 218 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
81803adant3 1081 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
82 divgcdcoprm0 15379 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
8381, 82syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
84 oveq12 6659 . . . . . . . . . . . 12 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = (𝑎 gcd 𝑏))
8584eqeq1d 2624 . . . . . . . . . . 11 (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ↔ (𝑎 gcd 𝑏) = 1))
8683, 85syl5ibcom 235 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8786ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → (((𝐴 / (𝐴 gcd 𝐵)) = 𝑎 ∧ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏) → (𝑎 gcd 𝑏) = 1))
8878, 87sylbid 230 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝑎 gcd 𝑏) = 1))
8988imp 445 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝑎 gcd 𝑏) = 1)
9028, 46, 893jca 1242 . . . . . 6 (((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) ∧ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴)))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
9190ex 450 . . . . 5 ((((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9291reximdva 3017 . . . 4 (((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9392reximdva 3017 . . 3 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
9410, 93syl5bir 233 . 2 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ((∃𝑎 ∈ ℤ 𝐴 = (𝑎 · (𝐴 gcd 𝐵)) ∧ ∃𝑏 ∈ ℤ 𝐵 = (𝑏 · (𝐵 gcd 𝐴))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1)))
955, 9, 94mp2and 715 1 ((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684  0cn0 11292  cz 11377   gcd cgcd 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217
This theorem is referenced by:  cncongr1  15381
  Copyright terms: Public domain W3C validator