Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcnre Structured version   Visualization version   GIF version

Theorem fcnre 39184
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fcnre.1 𝐾 = (topGen‘ran (,))
fcnre.3 𝑇 = 𝐽
sfcnre.5 𝐶 = (𝐽 Cn 𝐾)
fcnre.6 (𝜑𝐹𝐶)
Assertion
Ref Expression
fcnre (𝜑𝐹:𝑇⟶ℝ)

Proof of Theorem fcnre
StepHypRef Expression
1 fcnre.6 . . . . 5 (𝜑𝐹𝐶)
2 sfcnre.5 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
31, 2syl6eleq 2711 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 cntop1 21044 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . 3 (𝜑𝐽 ∈ Top)
6 fcnre.3 . . . 4 𝑇 = 𝐽
76toptopon 20722 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇))
85, 7sylib 208 . 2 (𝜑𝐽 ∈ (TopOn‘𝑇))
9 fcnre.1 . . . 4 𝐾 = (topGen‘ran (,))
10 retopon 22567 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
119, 10eqeltri 2697 . . 3 𝐾 ∈ (TopOn‘ℝ)
1211a1i 11 . 2 (𝜑𝐾 ∈ (TopOn‘ℝ))
13 cnf2 21053 . 2 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ)
148, 12, 3, 13syl3anc 1326 1 (𝜑𝐹:𝑇⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990   cuni 4436  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  (,)cioo 12175  topGenctg 16098  Topctop 20698  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  rfcnpre2  39190  cncmpmax  39191  rfcnpre3  39192  rfcnpre4  39193  rfcnnnub  39195  stoweidlem28  40245  stoweidlem29  40246  stoweidlem36  40253  stoweidlem43  40260  stoweidlem44  40261  stoweidlem47  40264  stoweidlem52  40269  stoweidlem57  40274  stoweidlem59  40276  stoweidlem60  40277  stoweidlem61  40278  stoweidlem62  40279  stoweid  40280
  Copyright terms: Public domain W3C validator