Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   GIF version

Theorem rfcnpre4 39193
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1 𝑡𝐹
rfcnpre4.2 𝐾 = (topGen‘ran (,))
rfcnpre4.3 𝑇 = 𝐽
rfcnpre4.4 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
rfcnpre4.5 (𝜑𝐵 ∈ ℝ)
rfcnpre4.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre4
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre4.3 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2622 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre4.6 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 39184 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6045 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6337 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
9 mnfxr 10096 . . . . . . . . 9 -∞ ∈ ℝ*
10 rfcnpre4.5 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1110rexrd 10089 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
13 elioc1 12217 . . . . . . . . 9 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
149, 12, 13sylancr 695 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
15 simpr3 1069 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)) → (𝐹𝑠) ≤ 𝐵)
165ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10089 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 481 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ*)
1916adantr 481 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ)
20 mnflt 11957 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → -∞ < (𝐹𝑠))
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → -∞ < (𝐹𝑠))
22 simpr 477 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ≤ 𝐵)
2318, 21, 223jca 1242 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵))
2415, 23impbida 877 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2514, 24bitrd 268 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2625pm5.32da 673 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
278, 26bitrd 268 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
28 nfcv 2764 . . . . . 6 𝑡𝑠
29 nfcv 2764 . . . . . 6 𝑡𝑇
30 rfcnpre4.1 . . . . . . . 8 𝑡𝐹
3130, 28nffv 6198 . . . . . . 7 𝑡(𝐹𝑠)
32 nfcv 2764 . . . . . . 7 𝑡
33 nfcv 2764 . . . . . . 7 𝑡𝐵
3431, 32, 33nfbr 4699 . . . . . 6 𝑡(𝐹𝑠) ≤ 𝐵
35 fveq2 6191 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq1d 4663 . . . . . 6 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ 𝐵 ↔ (𝐹𝑠) ≤ 𝐵))
3728, 29, 34, 36elrabf 3360 . . . . 5 (𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵} ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵))
3827, 37syl6bbr 278 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}))
3938eqrdv 2620 . . 3 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵})
40 rfcnpre4.4 . . 3 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
4139, 40syl6eqr 2674 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = 𝐴)
42 iocmnfcld 22572 . . . . 5 (𝐵 ∈ ℝ → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
4310, 42syl 17 . . . 4 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6194 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44syl6eleqr 2712 . . 3 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾))
46 cnclima 21072 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 693 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2702 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  {crab 2916   cuni 4436   class class class wbr 4653  ccnv 5113  ran crn 5115  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  (,]cioc 12176  topGenctg 16098  Clsdccld 20820   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ioc 12180  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-cn 21031
This theorem is referenced by:  stoweidlem59  40276
  Copyright terms: Public domain W3C validator