Proof of Theorem ffsrn
| Step | Hyp | Ref
| Expression |
| 1 | | imaundi 5545 |
. . . . . . 7
⊢ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍})) |
| 2 | 1 | reseq2i 5393 |
. . . . . 6
⊢ (𝐹 ↾ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍}))) |
| 3 | | undif1 4043 |
. . . . . . . . 9
⊢ ((V
∖ {𝑍}) ∪ {𝑍}) = (V ∪ {𝑍}) |
| 4 | | ssv 3625 |
. . . . . . . . . 10
⊢ {𝑍} ⊆ V |
| 5 | | ssequn2 3786 |
. . . . . . . . . 10
⊢ ({𝑍} ⊆ V ↔ (V ∪
{𝑍}) = V) |
| 6 | 4, 5 | mpbi 220 |
. . . . . . . . 9
⊢ (V ∪
{𝑍}) = V |
| 7 | 3, 6 | eqtri 2644 |
. . . . . . . 8
⊢ ((V
∖ {𝑍}) ∪ {𝑍}) = V |
| 8 | 7 | imaeq2i 5464 |
. . . . . . 7
⊢ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍})) = (◡𝐹 “ V) |
| 9 | 8 | reseq2i 5393 |
. . . . . 6
⊢ (𝐹 ↾ (◡𝐹 “ ((V ∖ {𝑍}) ∪ {𝑍}))) = (𝐹 ↾ (◡𝐹 “ V)) |
| 10 | | resundi 5410 |
. . . . . 6
⊢ (𝐹 ↾ ((◡𝐹 “ (V ∖ {𝑍})) ∪ (◡𝐹 “ {𝑍}))) = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 11 | 2, 9, 10 | 3eqtr3i 2652 |
. . . . 5
⊢ (𝐹 ↾ (◡𝐹 “ V)) = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 12 | | ffsrn.1 |
. . . . . 6
⊢ (𝜑 → Fun 𝐹) |
| 13 | | dfdm4 5316 |
. . . . . . 7
⊢ dom 𝐹 = ran ◡𝐹 |
| 14 | | dfrn4 5595 |
. . . . . . 7
⊢ ran ◡𝐹 = (◡𝐹 “ V) |
| 15 | 13, 14 | eqtri 2644 |
. . . . . 6
⊢ dom 𝐹 = (◡𝐹 “ V) |
| 16 | | df-fn 5891 |
. . . . . . 7
⊢ (𝐹 Fn (◡𝐹 “ V) ↔ (Fun 𝐹 ∧ dom 𝐹 = (◡𝐹 “ V))) |
| 17 | | fnresdm 6000 |
. . . . . . 7
⊢ (𝐹 Fn (◡𝐹 “ V) → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 18 | 16, 17 | sylbir 225 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ dom 𝐹 = (◡𝐹 “ V)) → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 19 | 12, 15, 18 | sylancl 694 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ V)) = 𝐹) |
| 20 | 11, 19 | syl5reqr 2671 |
. . . 4
⊢ (𝜑 → 𝐹 = ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 21 | 20 | rneqd 5353 |
. . 3
⊢ (𝜑 → ran 𝐹 = ran ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 22 | | rnun 5541 |
. . 3
⊢ ran
((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ (𝐹 ↾ (◡𝐹 “ {𝑍}))) = (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) |
| 23 | 21, 22 | syl6eq 2672 |
. 2
⊢ (𝜑 → ran 𝐹 = (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍})))) |
| 24 | | ffsrn.0 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 25 | | ffsrn.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 26 | | suppimacnv 7306 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
| 28 | | ffsrn.2 |
. . . . 5
⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 29 | 27, 28 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
| 30 | | cnvexg 7112 |
. . . . . 6
⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) |
| 31 | | imaexg 7103 |
. . . . . 6
⊢ (◡𝐹 ∈ V → (◡𝐹 “ (V ∖ {𝑍})) ∈ V) |
| 32 | 24, 30, 31 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ V) |
| 33 | | cnvimass 5485 |
. . . . . . 7
⊢ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹 |
| 34 | | fores 6124 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ (◡𝐹 “ (V ∖ {𝑍})) ⊆ dom 𝐹) → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍})))) |
| 35 | 12, 33, 34 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍})))) |
| 36 | | fofn 6117 |
. . . . . 6
⊢ ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))):(◡𝐹 “ (V ∖ {𝑍}))–onto→(𝐹 “ (◡𝐹 “ (V ∖ {𝑍}))) → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍}))) |
| 37 | 35, 36 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍}))) |
| 38 | | fnrndomg 9358 |
. . . . 5
⊢ ((◡𝐹 “ (V ∖ {𝑍})) ∈ V → ((𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) Fn (◡𝐹 “ (V ∖ {𝑍})) → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍})))) |
| 39 | 32, 37, 38 | sylc 65 |
. . . 4
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍}))) |
| 40 | | domfi 8181 |
. . . 4
⊢ (((◡𝐹 “ (V ∖ {𝑍})) ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ≼ (◡𝐹 “ (V ∖ {𝑍}))) → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
| 41 | 29, 39, 40 | syl2anc 693 |
. . 3
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin) |
| 42 | | snfi 8038 |
. . . 4
⊢ {𝑍} ∈ Fin |
| 43 | | df-ima 5127 |
. . . . . 6
⊢ (𝐹 “ (◡𝐹 “ {𝑍})) = ran (𝐹 ↾ (◡𝐹 “ {𝑍})) |
| 44 | | funimacnv 5970 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹 “ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 45 | 12, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 46 | 43, 45 | syl5eqr 2670 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) = ({𝑍} ∩ ran 𝐹)) |
| 47 | | inss1 3833 |
. . . . 5
⊢ ({𝑍} ∩ ran 𝐹) ⊆ {𝑍} |
| 48 | 46, 47 | syl6eqss 3655 |
. . . 4
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ⊆ {𝑍}) |
| 49 | | ssfi 8180 |
. . . 4
⊢ (({𝑍} ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ⊆ {𝑍}) → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) |
| 50 | 42, 48, 49 | sylancr 695 |
. . 3
⊢ (𝜑 → ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) |
| 51 | | unfi 8227 |
. . 3
⊢ ((ran
(𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∈ Fin ∧ ran (𝐹 ↾ (◡𝐹 “ {𝑍})) ∈ Fin) → (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) ∈ Fin) |
| 52 | 41, 50, 51 | syl2anc 693 |
. 2
⊢ (𝜑 → (ran (𝐹 ↾ (◡𝐹 “ (V ∖ {𝑍}))) ∪ ran (𝐹 ↾ (◡𝐹 “ {𝑍}))) ∈ Fin) |
| 53 | 23, 52 | eqeltrd 2701 |
1
⊢ (𝜑 → ran 𝐹 ∈ Fin) |