Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finixpnum Structured version   Visualization version   GIF version

Theorem finixpnum 33394
Description: A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019.)
Assertion
Ref Expression
finixpnum ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem finixpnum
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3138 . . . 4 (𝑤 = ∅ → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ ∅ 𝐵 ∈ dom card))
2 ixpeq1 7919 . . . . . 6 (𝑤 = ∅ → X𝑥𝑤 𝐵 = X𝑥 ∈ ∅ 𝐵)
3 ixp0x 7936 . . . . . 6 X𝑥 ∈ ∅ 𝐵 = {∅}
42, 3syl6eq 2672 . . . . 5 (𝑤 = ∅ → X𝑥𝑤 𝐵 = {∅})
54eleq1d 2686 . . . 4 (𝑤 = ∅ → (X𝑥𝑤 𝐵 ∈ dom card ↔ {∅} ∈ dom card))
61, 5imbi12d 334 . . 3 (𝑤 = ∅ → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)))
7 raleq 3138 . . . 4 (𝑤 = 𝑦 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝑦 𝐵 ∈ dom card))
8 ixpeq1 7919 . . . . 5 (𝑤 = 𝑦X𝑥𝑤 𝐵 = X𝑥𝑦 𝐵)
98eleq1d 2686 . . . 4 (𝑤 = 𝑦 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝑦 𝐵 ∈ dom card))
107, 9imbi12d 334 . . 3 (𝑤 = 𝑦 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card)))
11 raleq 3138 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
12 ralunb 3794 . . . . . 6 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card))
13 vex 3203 . . . . . . . 8 𝑧 ∈ V
14 ralsnsg 4216 . . . . . . . . 9 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ [𝑧 / 𝑥]𝐵 ∈ dom card))
15 sbcel1g 3987 . . . . . . . . 9 (𝑧 ∈ V → ([𝑧 / 𝑥]𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1614, 15bitrd 268 . . . . . . . 8 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card))
1713, 16ax-mp 5 . . . . . . 7 (∀𝑥 ∈ {𝑧}𝐵 ∈ dom card ↔ 𝑧 / 𝑥𝐵 ∈ dom card)
1817anbi2i 730 . . . . . 6 ((∀𝑥𝑦 𝐵 ∈ dom card ∧ ∀𝑥 ∈ {𝑧}𝐵 ∈ dom card) ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
1912, 18bitri 264 . . . . 5 (∀𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card))
2011, 19syl6bb 276 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥𝑤 𝐵 ∈ dom card ↔ (∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card)))
21 ixpeq1 7919 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → X𝑥𝑤 𝐵 = X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
2221eleq1d 2686 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
2320, 22imbi12d 334 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
24 raleq 3138 . . . 4 (𝑤 = 𝐴 → (∀𝑥𝑤 𝐵 ∈ dom card ↔ ∀𝑥𝐴 𝐵 ∈ dom card))
25 ixpeq1 7919 . . . . 5 (𝑤 = 𝐴X𝑥𝑤 𝐵 = X𝑥𝐴 𝐵)
2625eleq1d 2686 . . . 4 (𝑤 = 𝐴 → (X𝑥𝑤 𝐵 ∈ dom card ↔ X𝑥𝐴 𝐵 ∈ dom card))
2724, 26imbi12d 334 . . 3 (𝑤 = 𝐴 → ((∀𝑥𝑤 𝐵 ∈ dom card → X𝑥𝑤 𝐵 ∈ dom card) ↔ (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card)))
28 snfi 8038 . . . 4 {∅} ∈ Fin
29 finnum 8774 . . . 4 ({∅} ∈ Fin → {∅} ∈ dom card)
3028, 29mp1i 13 . . 3 (∀𝑥 ∈ ∅ 𝐵 ∈ dom card → {∅} ∈ dom card)
31 pm2.27 42 . . . . . . . 8 (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥𝑦 𝐵 ∈ dom card))
32 xpnum 8777 . . . . . . . . . . 11 ((X𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
3332ancoms 469 . . . . . . . . . 10 ((𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card)
34 xp1st 7198 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) ∈ X𝑥𝑦 𝐵)
35 ixpfn 7914 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 → (1st𝑤) Fn 𝑦)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (1st𝑤) Fn 𝑦)
37 fvex 6201 . . . . . . . . . . . . . . . 16 (2nd𝑤) ∈ V
3813, 37fnsn 5946 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}
3936, 38jctir 561 . . . . . . . . . . . . . 14 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}))
40 disjsn 4246 . . . . . . . . . . . . . . 15 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4140biimpri 218 . . . . . . . . . . . . . 14 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
42 fnun 5997 . . . . . . . . . . . . . 14 ((((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧}) ∧ (𝑦 ∩ {𝑧}) = ∅) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
4339, 41, 42syl2anr 495 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}))
44 fvex 6201 . . . . . . . . . . . . . . . . 17 (1st𝑤) ∈ V
4544elixp 7915 . . . . . . . . . . . . . . . 16 ((1st𝑤) ∈ X𝑥𝑦 𝐵 ↔ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
4634, 45sylib 208 . . . . . . . . . . . . . . 15 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵))
47 fvun1 6269 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4838, 47mp3an2 1412 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑥𝑦)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
4948anassrs 680 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = ((1st𝑤)‘𝑥))
5049eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → ((((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ↔ ((1st𝑤)‘𝑥) ∈ 𝐵))
5150biimprd 238 . . . . . . . . . . . . . . . . . 18 ((((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) ∧ 𝑥𝑦) → (((1st𝑤)‘𝑥) ∈ 𝐵 → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5251ralimdva 2962 . . . . . . . . . . . . . . . . 17 (((1st𝑤) Fn 𝑦 ∧ (𝑦 ∩ {𝑧}) = ∅) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5352ancoms 469 . . . . . . . . . . . . . . . 16 (((𝑦 ∩ {𝑧}) = ∅ ∧ (1st𝑤) Fn 𝑦) → (∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵 → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
5453impr 649 . . . . . . . . . . . . . . 15 (((𝑦 ∩ {𝑧}) = ∅ ∧ ((1st𝑤) Fn 𝑦 ∧ ∀𝑥𝑦 ((1st𝑤)‘𝑥) ∈ 𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
5541, 46, 54syl2an 494 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
56 vsnid 4209 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
5741, 56jctir 561 . . . . . . . . . . . . . . . . . 18 𝑧𝑦 → ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧}))
58 fvun2 6270 . . . . . . . . . . . . . . . . . . 19 (((1st𝑤) Fn 𝑦 ∧ {⟨𝑧, (2nd𝑤)⟩} Fn {𝑧} ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
5938, 58mp3an2 1412 . . . . . . . . . . . . . . . . . 18 (((1st𝑤) Fn 𝑦 ∧ ((𝑦 ∩ {𝑧}) = ∅ ∧ 𝑧 ∈ {𝑧})) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
6036, 57, 59syl2anr 495 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧))
61 csbfv 6233 . . . . . . . . . . . . . . . . 17 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑧)
6213, 37fvsn 6446 . . . . . . . . . . . . . . . . . 18 ({⟨𝑧, (2nd𝑤)⟩}‘𝑧) = (2nd𝑤)
6362eqcomi 2631 . . . . . . . . . . . . . . . . 17 (2nd𝑤) = ({⟨𝑧, (2nd𝑤)⟩}‘𝑧)
6460, 61, 633eqtr4g 2681 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) = (2nd𝑤))
65 xp2nd 7199 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6665adantl 482 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → (2nd𝑤) ∈ 𝑧 / 𝑥𝐵)
6764, 66eqeltrd 2701 . . . . . . . . . . . . . . 15 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → 𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
68 ralsnsg 4216 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
6913, 68ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵[𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
70 sbcel12 3983 . . . . . . . . . . . . . . . 16 ([𝑧 / 𝑥](((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7169, 70bitri 264 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵𝑧 / 𝑥(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝑧 / 𝑥𝐵)
7267, 71sylibr 224 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
73 ralun 3795 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ {𝑧} (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
7455, 72, 73syl2anc 693 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵)
75 snex 4908 . . . . . . . . . . . . . . 15 {⟨𝑧, (2nd𝑤)⟩} ∈ V
7644, 75unex 6956 . . . . . . . . . . . . . 14 ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ V
7776elixp 7915 . . . . . . . . . . . . 13 (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})‘𝑥) ∈ 𝐵))
7843, 74, 77sylanbrc 698 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)) → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) ∈ X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
79 eqid 2622 . . . . . . . . . . . 12 (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})) = (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))
8078, 79fmptd 6385 . . . . . . . . . . 11 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
81 ixpfn 7914 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 Fn (𝑦 ∪ {𝑧}))
82 ssun1 3776 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ (𝑦 ∪ {𝑧})
83 fnssres 6004 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑦 ⊆ (𝑦 ∪ {𝑧})) → (𝑢𝑦) Fn 𝑦)
8481, 82, 83sylancl 694 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) Fn 𝑦)
85 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑢 ∈ V
8685elixp 7915 . . . . . . . . . . . . . . . . 17 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ (𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵))
87 ssralv 3666 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵))
8882, 87ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵)
89 fvres 6207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑦 → ((𝑢𝑦)‘𝑥) = (𝑢𝑥))
9089eleq1d 2686 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑦 → (((𝑢𝑦)‘𝑥) ∈ 𝐵 ↔ (𝑢𝑥) ∈ 𝐵))
9190biimprd 238 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑦 → ((𝑢𝑥) ∈ 𝐵 → ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9291ralimia 2950 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑦 (𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9388, 92syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9493adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑢𝑥) ∈ 𝐵) → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9586, 94sylbi 207 . . . . . . . . . . . . . . . 16 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵)
9685resex 5443 . . . . . . . . . . . . . . . . 17 (𝑢𝑦) ∈ V
9796elixp 7915 . . . . . . . . . . . . . . . 16 ((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ↔ ((𝑢𝑦) Fn 𝑦 ∧ ∀𝑥𝑦 ((𝑢𝑦)‘𝑥) ∈ 𝐵))
9884, 95, 97sylanbrc 698 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑦) ∈ X𝑥𝑦 𝐵)
99 ssun2 3777 . . . . . . . . . . . . . . . . . 18 {𝑧} ⊆ (𝑦 ∪ {𝑧})
10099, 56sselii 3600 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (𝑦 ∪ {𝑧})
101 csbeq1 3536 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧𝑤 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
102101fvixp 7913 . . . . . . . . . . . . . . . . 17 ((𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵𝑧 ∈ (𝑦 ∪ {𝑧})) → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
103100, 102mpan2 707 . . . . . . . . . . . . . . . 16 (𝑢X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
104 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑤𝐵
105 nfcsb1v 3549 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
106 csbeq1a 3542 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
107104, 105, 106cbvixp 7925 . . . . . . . . . . . . . . . 16 X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = X𝑤 ∈ (𝑦 ∪ {𝑧})𝑤 / 𝑥𝐵
108103, 107eleq2s 2719 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵)
109 opelxpi 5148 . . . . . . . . . . . . . . 15 (((𝑢𝑦) ∈ X𝑥𝑦 𝐵 ∧ (𝑢𝑧) ∈ 𝑧 / 𝑥𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
11098, 108, 109syl2anc 693 . . . . . . . . . . . . . 14 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
111110adantl 482 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵))
112 disj3 4021 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ 𝑦 = (𝑦 ∖ {𝑧}))
11340, 112sylbb1 227 . . . . . . . . . . . . . . . . . 18 𝑧𝑦𝑦 = (𝑦 ∖ {𝑧}))
114 difun2 4048 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∪ {𝑧}) ∖ {𝑧}) = (𝑦 ∖ {𝑧})
115113, 114syl6eqr 2674 . . . . . . . . . . . . . . . . 17 𝑧𝑦𝑦 = ((𝑦 ∪ {𝑧}) ∖ {𝑧}))
116115reseq2d 5396 . . . . . . . . . . . . . . . 16 𝑧𝑦 → (𝑢𝑦) = (𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})))
117116uneq1d 3766 . . . . . . . . . . . . . . 15 𝑧𝑦 → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
118117adantr 481 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
119 fvex 6201 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑧) ∈ V
12096, 119op1std 7178 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (1st𝑤) = (𝑢𝑦))
12196, 119op2ndd 7179 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (2nd𝑤) = (𝑢𝑧))
122121opeq2d 4409 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ⟨𝑧, (2nd𝑤)⟩ = ⟨𝑧, (𝑢𝑧)⟩)
123122sneqd 4189 . . . . . . . . . . . . . . . . . 18 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → {⟨𝑧, (2nd𝑤)⟩} = {⟨𝑧, (𝑢𝑧)⟩})
124120, 123uneq12d 3768 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
125 snex 4908 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, (𝑢𝑧)⟩} ∈ V
12696, 125unex 6956 . . . . . . . . . . . . . . . . 17 ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}) ∈ V
127124, 79, 126fvmpt 6282 . . . . . . . . . . . . . . . 16 (⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
128110, 127syl 17 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
129128adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩) = ((𝑢𝑦) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
130 fnsnsplit 6450 . . . . . . . . . . . . . . . 16 ((𝑢 Fn (𝑦 ∪ {𝑧}) ∧ 𝑧 ∈ (𝑦 ∪ {𝑧})) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
13181, 100, 130sylancl 694 . . . . . . . . . . . . . . 15 (𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
132131adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑢 ↾ ((𝑦 ∪ {𝑧}) ∖ {𝑧})) ∪ {⟨𝑧, (𝑢𝑧)⟩}))
133118, 129, 1323eqtr4rd 2667 . . . . . . . . . . . . 13 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
134 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣) = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩))
135134eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝑢𝑦), (𝑢𝑧)⟩ → (𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣) ↔ 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩)))
136135rspcev 3309 . . . . . . . . . . . . 13 ((⟨(𝑢𝑦), (𝑢𝑧)⟩ ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∧ 𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘⟨(𝑢𝑦), (𝑢𝑧)⟩)) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
137111, 133, 136syl2anc 693 . . . . . . . . . . . 12 ((¬ 𝑧𝑦𝑢X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → ∃𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
138137ralrimiva 2966 . . . . . . . . . . 11 𝑧𝑦 → ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣))
139 dffo3 6374 . . . . . . . . . . 11 ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ↔ ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)⟶X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∧ ∀𝑢X 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵𝑣 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)𝑢 = ((𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩}))‘𝑣)))
14080, 138, 139sylanbrc 698 . . . . . . . . . 10 𝑧𝑦 → (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
141 fonum 8881 . . . . . . . . . 10 (((X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ∈ dom card ∧ (𝑤 ∈ (X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵) ↦ ((1st𝑤) ∪ {⟨𝑧, (2nd𝑤)⟩})):(X𝑥𝑦 𝐵 × 𝑧 / 𝑥𝐵)–ontoX𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
14233, 140, 141syl2anr 495 . . . . . . . . 9 ((¬ 𝑧𝑦 ∧ (𝑧 / 𝑥𝐵 ∈ dom card ∧ X𝑥𝑦 𝐵 ∈ dom card)) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)
143142expr 643 . . . . . . . 8 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (X𝑥𝑦 𝐵 ∈ dom card → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card))
14431, 143syl9r 78 . . . . . . 7 ((¬ 𝑧𝑦𝑧 / 𝑥𝐵 ∈ dom card) → (∀𝑥𝑦 𝐵 ∈ dom card → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
145144expimpd 629 . . . . . 6 𝑧𝑦 → ((𝑧 / 𝑥𝐵 ∈ dom card ∧ ∀𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
146145ancomsd 470 . . . . 5 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
147146com23 86 . . . 4 𝑧𝑦 → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
148147adantl 482 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑥𝑦 𝐵 ∈ dom card → X𝑥𝑦 𝐵 ∈ dom card) → ((∀𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥𝐵 ∈ dom card) → X𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ dom card)))
1496, 10, 23, 27, 30, 148findcard2s 8201 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵 ∈ dom card → X𝑥𝐴 𝐵 ∈ dom card))
150149imp 445 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ dom card) → X𝑥𝐴 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  [wsbc 3435  csb 3533  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  1st c1st 7166  2nd c2nd 7167  Xcixp 7908  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-card 8765  df-acn 8768
This theorem is referenced by:  poimirlem32  33441
  Copyright terms: Public domain W3C validator