MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcntr Structured version   Visualization version   GIF version

Theorem flfcntr 21847
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.)
Hypotheses
Ref Expression
flfcntr.c 𝐶 = 𝐽
flfcntr.b 𝐵 = 𝐾
flfcntr.j (𝜑𝐽 ∈ Top)
flfcntr.a (𝜑𝐴𝐶)
flfcntr.1 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
flfcntr.y (𝜑𝑋𝐴)
Assertion
Ref Expression
flfcntr (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))

Proof of Theorem flfcntr
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flfcntr.1 . . . . 5 (𝜑𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾))
2 flfcntr.j . . . . . . . 8 (𝜑𝐽 ∈ Top)
3 flfcntr.c . . . . . . . . 9 𝐶 = 𝐽
43toptopon 20722 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝐶))
52, 4sylib 208 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝐶))
6 flfcntr.a . . . . . . 7 (𝜑𝐴𝐶)
7 resttopon 20965 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
85, 6, 7syl2anc 693 . . . . . 6 (𝜑 → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
9 cntop2 21045 . . . . . . . 8 (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
101, 9syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
11 flfcntr.b . . . . . . . 8 𝐵 = 𝐾
1211toptopon 20722 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝐵))
1310, 12sylib 208 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝐵))
14 cnflf 21806 . . . . . 6 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝐾 ∈ (TopOn‘𝐵)) → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
158, 13, 14syl2anc 693 . . . . 5 (𝜑 → (𝐹 ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))))
161, 15mpbid 222 . . . 4 (𝜑 → (𝐹:𝐴𝐵 ∧ ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹)))
1716simprd 479 . . 3 (𝜑 → ∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹))
183sscls 20860 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴𝐶) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
192, 6, 18syl2anc 693 . . . . . 6 (𝜑𝐴 ⊆ ((cls‘𝐽)‘𝐴))
20 flfcntr.y . . . . . 6 (𝜑𝑋𝐴)
2119, 20sseldd 3604 . . . . 5 (𝜑𝑋 ∈ ((cls‘𝐽)‘𝐴))
226, 20sseldd 3604 . . . . . 6 (𝜑𝑋𝐶)
23 trnei 21696 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐶) ∧ 𝐴𝐶𝑋𝐶) → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
245, 6, 22, 23syl3anc 1326 . . . . 5 (𝜑 → (𝑋 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴)))
2521, 24mpbid 222 . . . 4 (𝜑 → (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) ∈ (Fil‘𝐴))
26 oveq2 6658 . . . . . 6 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐽t 𝐴) fLim 𝑎) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
27 oveq2 6658 . . . . . . . 8 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (𝐾 fLimf 𝑎) = (𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
2827fveq1d 6193 . . . . . . 7 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐾 fLimf 𝑎)‘𝐹) = ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
2928eleq2d 2687 . . . . . 6 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3026, 29raleqbidv 3152 . . . . 5 (𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴) → (∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3130adantl 482 . . . 4 ((𝜑𝑎 = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)) → (∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) ↔ ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3225, 31rspcdv 3312 . . 3 (𝜑 → (∀𝑎 ∈ (Fil‘𝐴)∀𝑥 ∈ ((𝐽t 𝐴) fLim 𝑎)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑎)‘𝐹) → ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
3317, 32mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
34 neiflim 21778 . . . . 5 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
358, 20, 34syl2anc 693 . . . 4 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})))
3620snssd 4340 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝐴)
373neitr 20984 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐶 ∧ {𝑋} ⊆ 𝐴) → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
382, 6, 36, 37syl3anc 1326 . . . . 5 (𝜑 → ((nei‘(𝐽t 𝐴))‘{𝑋}) = (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))
3938oveq2d 6666 . . . 4 (𝜑 → ((𝐽t 𝐴) fLim ((nei‘(𝐽t 𝐴))‘{𝑋})) = ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
4035, 39eleqtrd 2703 . . 3 (𝜑𝑋 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴)))
41 fveq2 6191 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
4241eleq1d 2686 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
4342adantl 482 . . 3 ((𝜑𝑥 = 𝑋) → ((𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) ↔ (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
4440, 43rspcdv 3312 . 2 (𝜑 → (∀𝑥 ∈ ((𝐽t 𝐴) fLim (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))(𝐹𝑥) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹) → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹)))
4533, 44mpd 15 1 (𝜑 → (𝐹𝑋) ∈ ((𝐾 fLimf (((nei‘𝐽)‘{𝑋}) ↾t 𝐴))‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  {csn 4177   cuni 4436  wf 5884  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715  clsccl 20822  neicnei 20901   Cn ccn 21028  Filcfil 21649   fLim cflim 21738   fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744
This theorem is referenced by:  cnextfres  21873
  Copyright terms: Public domain W3C validator