MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcntr Structured version   Visualization version   Unicode version

Theorem flfcntr 21847
Description: A continuous function's value is always in the trace of its filter limit. (Contributed by Thierry Arnoux, 30-Aug-2020.)
Hypotheses
Ref Expression
flfcntr.c  |-  C  = 
U. J
flfcntr.b  |-  B  = 
U. K
flfcntr.j  |-  ( ph  ->  J  e.  Top )
flfcntr.a  |-  ( ph  ->  A  C_  C )
flfcntr.1  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
flfcntr.y  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
flfcntr  |-  ( ph  ->  ( F `  X
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F ) )

Proof of Theorem flfcntr
Dummy variables  a  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flfcntr.1 . . . . 5  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
2 flfcntr.j . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
3 flfcntr.c . . . . . . . . 9  |-  C  = 
U. J
43toptopon 20722 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
52, 4sylib 208 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  C ) )
6 flfcntr.a . . . . . . 7  |-  ( ph  ->  A  C_  C )
7 resttopon 20965 . . . . . . 7  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C )  ->  ( Jt  A )  e.  (TopOn `  A ) )
85, 6, 7syl2anc 693 . . . . . 6  |-  ( ph  ->  ( Jt  A )  e.  (TopOn `  A ) )
9 cntop2 21045 . . . . . . . 8  |-  ( F  e.  ( ( Jt  A )  Cn  K )  ->  K  e.  Top )
101, 9syl 17 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
11 flfcntr.b . . . . . . . 8  |-  B  = 
U. K
1211toptopon 20722 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
1310, 12sylib 208 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  B ) )
14 cnflf 21806 . . . . . 6  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  B )
)  ->  ( F  e.  ( ( Jt  A )  Cn  K )  <->  ( F : A --> B  /\  A. a  e.  ( Fil `  A ) A. x  e.  ( ( Jt  A ) 
fLim  a ) ( F `  x )  e.  ( ( K 
fLimf  a ) `  F
) ) ) )
158, 13, 14syl2anc 693 . . . . 5  |-  ( ph  ->  ( F  e.  ( ( Jt  A )  Cn  K
)  <->  ( F : A
--> B  /\  A. a  e.  ( Fil `  A
) A. x  e.  ( ( Jt  A ) 
fLim  a ) ( F `  x )  e.  ( ( K 
fLimf  a ) `  F
) ) ) )
161, 15mpbid 222 . . . 4  |-  ( ph  ->  ( F : A --> B  /\  A. a  e.  ( Fil `  A
) A. x  e.  ( ( Jt  A ) 
fLim  a ) ( F `  x )  e.  ( ( K 
fLimf  a ) `  F
) ) )
1716simprd 479 . . 3  |-  ( ph  ->  A. a  e.  ( Fil `  A ) A. x  e.  ( ( Jt  A )  fLim  a
) ( F `  x )  e.  ( ( K  fLimf  a ) `
 F ) )
183sscls 20860 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  C_  ( ( cls `  J ) `  A
) )
192, 6, 18syl2anc 693 . . . . . 6  |-  ( ph  ->  A  C_  ( ( cls `  J ) `  A ) )
20 flfcntr.y . . . . . 6  |-  ( ph  ->  X  e.  A )
2119, 20sseldd 3604 . . . . 5  |-  ( ph  ->  X  e.  ( ( cls `  J ) `
 A ) )
226, 20sseldd 3604 . . . . . 6  |-  ( ph  ->  X  e.  C )
23 trnei 21696 . . . . . 6  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  X  e.  C )  ->  ( X  e.  ( ( cls `  J ) `  A )  <->  ( (
( nei `  J
) `  { X } )t  A )  e.  ( Fil `  A ) ) )
245, 6, 22, 23syl3anc 1326 . . . . 5  |-  ( ph  ->  ( X  e.  ( ( cls `  J
) `  A )  <->  ( ( ( nei `  J
) `  { X } )t  A )  e.  ( Fil `  A ) ) )
2521, 24mpbid 222 . . . 4  |-  ( ph  ->  ( ( ( nei `  J ) `  { X } )t  A )  e.  ( Fil `  A ) )
26 oveq2 6658 . . . . . 6  |-  ( a  =  ( ( ( nei `  J ) `
 { X }
)t 
A )  ->  (
( Jt  A )  fLim  a
)  =  ( ( Jt  A )  fLim  (
( ( nei `  J
) `  { X } )t  A ) ) )
27 oveq2 6658 . . . . . . . 8  |-  ( a  =  ( ( ( nei `  J ) `
 { X }
)t 
A )  ->  ( K  fLimf  a )  =  ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) )
2827fveq1d 6193 . . . . . . 7  |-  ( a  =  ( ( ( nei `  J ) `
 { X }
)t 
A )  ->  (
( K  fLimf  a ) `
 F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) )
2928eleq2d 2687 . . . . . 6  |-  ( a  =  ( ( ( nei `  J ) `
 { X }
)t 
A )  ->  (
( F `  x
)  e.  ( ( K  fLimf  a ) `  F )  <->  ( F `  x )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
3026, 29raleqbidv 3152 . . . . 5  |-  ( a  =  ( ( ( nei `  J ) `
 { X }
)t 
A )  ->  ( A. x  e.  (
( Jt  A )  fLim  a
) ( F `  x )  e.  ( ( K  fLimf  a ) `
 F )  <->  A. x  e.  ( ( Jt  A ) 
fLim  ( ( ( nei `  J ) `
 { X }
)t 
A ) ) ( F `  x )  e.  ( ( K 
fLimf  ( ( ( nei `  J ) `  { X } )t  A ) ) `  F ) ) )
3130adantl 482 . . . 4  |-  ( (
ph  /\  a  =  ( ( ( nei `  J ) `  { X } )t  A ) )  -> 
( A. x  e.  ( ( Jt  A ) 
fLim  a ) ( F `  x )  e.  ( ( K 
fLimf  a ) `  F
)  <->  A. x  e.  ( ( Jt  A )  fLim  (
( ( nei `  J
) `  { X } )t  A ) ) ( F `  x )  e.  ( ( K 
fLimf  ( ( ( nei `  J ) `  { X } )t  A ) ) `  F ) ) )
3225, 31rspcdv 3312 . . 3  |-  ( ph  ->  ( A. a  e.  ( Fil `  A
) A. x  e.  ( ( Jt  A ) 
fLim  a ) ( F `  x )  e.  ( ( K 
fLimf  a ) `  F
)  ->  A. x  e.  ( ( Jt  A ) 
fLim  ( ( ( nei `  J ) `
 { X }
)t 
A ) ) ( F `  x )  e.  ( ( K 
fLimf  ( ( ( nei `  J ) `  { X } )t  A ) ) `  F ) ) )
3317, 32mpd 15 . 2  |-  ( ph  ->  A. x  e.  ( ( Jt  A )  fLim  (
( ( nei `  J
) `  { X } )t  A ) ) ( F `  x )  e.  ( ( K 
fLimf  ( ( ( nei `  J ) `  { X } )t  A ) ) `  F ) )
34 neiflim 21778 . . . . 5  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  X  e.  A )  ->  X  e.  ( ( Jt  A ) 
fLim  ( ( nei `  ( Jt  A ) ) `  { X } ) ) )
358, 20, 34syl2anc 693 . . . 4  |-  ( ph  ->  X  e.  ( ( Jt  A )  fLim  (
( nei `  ( Jt  A ) ) `  { X } ) ) )
3620snssd 4340 . . . . . 6  |-  ( ph  ->  { X }  C_  A )
373neitr 20984 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  C  /\  { X }  C_  A )  ->  ( ( nei `  ( Jt  A ) ) `  { X } )  =  ( ( ( nei `  J ) `  { X } )t  A ) )
382, 6, 36, 37syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( nei `  ( Jt  A ) ) `  { X } )  =  ( ( ( nei `  J ) `  { X } )t  A ) )
3938oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( Jt  A ) 
fLim  ( ( nei `  ( Jt  A ) ) `  { X } ) )  =  ( ( Jt  A )  fLim  ( (
( nei `  J
) `  { X } )t  A ) ) )
4035, 39eleqtrd 2703 . . 3  |-  ( ph  ->  X  e.  ( ( Jt  A )  fLim  (
( ( nei `  J
) `  { X } )t  A ) ) )
41 fveq2 6191 . . . . 5  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
4241eleq1d 2686 . . . 4  |-  ( x  =  X  ->  (
( F `  x
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F )  <->  ( F `  X )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
4342adantl 482 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (
( F `  x
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F )  <->  ( F `  X )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
4440, 43rspcdv 3312 . 2  |-  ( ph  ->  ( A. x  e.  ( ( Jt  A ) 
fLim  ( ( ( nei `  J ) `
 { X }
)t 
A ) ) ( F `  x )  e.  ( ( K 
fLimf  ( ( ( nei `  J ) `  { X } )t  A ) ) `  F )  ->  ( F `  X )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
4533, 44mpd 15 1  |-  ( ph  ->  ( F `  X
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   U.cuni 4436   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   clsccl 20822   neicnei 20901    Cn ccn 21028   Filcfil 21649    fLim cflim 21738    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744
This theorem is referenced by:  cnextfres  21873
  Copyright terms: Public domain W3C validator