MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Visualization version   GIF version

Theorem fmfnfmlem4 21761
Description: Lemma for fmfnfm 21762. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem4 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem4
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filelss 21656 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
32ex 450 . . . 4 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
41, 3syl 17 . . 3 (𝜑 → (𝑡𝐿𝑡𝑋))
5 fmfnfm.b . . . . . . . . 9 (𝜑𝐵 ∈ (fBas‘𝑌))
6 mptexg 6484 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
7 rnexg 7098 . . . . . . . . . . 11 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐿 ∈ (Fil‘𝑋) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
91, 8syl 17 . . . . . . . . 9 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
10 unexg 6959 . . . . . . . . 9 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
115, 9, 10syl2anc 693 . . . . . . . 8 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
12 ssfii 8325 . . . . . . . . 9 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1312unssbd 3791 . . . . . . . 8 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1411, 13syl 17 . . . . . . 7 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1514adantr 481 . . . . . 6 ((𝜑𝑡𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
16 eqid 2622 . . . . . . . . 9 (𝐹𝑡) = (𝐹𝑡)
17 imaeq2 5462 . . . . . . . . . . 11 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
1817eqeq2d 2632 . . . . . . . . . 10 (𝑥 = 𝑡 → ((𝐹𝑡) = (𝐹𝑥) ↔ (𝐹𝑡) = (𝐹𝑡)))
1918rspcev 3309 . . . . . . . . 9 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2016, 19mpan2 707 . . . . . . . 8 (𝑡𝐿 → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2120adantl 482 . . . . . . 7 ((𝜑𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
22 elfvdm 6220 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
235, 22syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ dom fBas)
24 cnvimass 5485 . . . . . . . . . . 11 (𝐹𝑡) ⊆ dom 𝐹
25 fmfnfm.f . . . . . . . . . . . 12 (𝜑𝐹:𝑌𝑋)
26 fdm 6051 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
2725, 26syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑌)
2824, 27syl5sseq 3653 . . . . . . . . . 10 (𝜑 → (𝐹𝑡) ⊆ 𝑌)
2923, 28ssexd 4805 . . . . . . . . 9 (𝜑 → (𝐹𝑡) ∈ V)
3029adantr 481 . . . . . . . 8 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ V)
31 eqid 2622 . . . . . . . . 9 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
3231elrnmpt 5372 . . . . . . . 8 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3330, 32syl 17 . . . . . . 7 ((𝜑𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3421, 33mpbird 247 . . . . . 6 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
3515, 34sseldd 3604 . . . . 5 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
36 ffun 6048 . . . . . . . 8 (𝐹:𝑌𝑋 → Fun 𝐹)
37 ssid 3624 . . . . . . . 8 (𝐹𝑡) ⊆ (𝐹𝑡)
38 funimass2 5972 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3936, 37, 38sylancl 694 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
4025, 39syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
4140adantr 481 . . . . 5 ((𝜑𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
42 imaeq2 5462 . . . . . . 7 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
4342sseq1d 3632 . . . . . 6 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
4443rspcev 3309 . . . . 5 (((𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4535, 41, 44syl2anc 693 . . . 4 ((𝜑𝑡𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4645ex 450 . . 3 (𝜑 → (𝑡𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡))
474, 46jcad 555 . 2 (𝜑 → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
48 elfiun 8336 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
495, 9, 48syl2anc 693 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
50 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
515, 1, 25, 50fmfnfmlem1 21758 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
525, 1, 25, 50fmfnfmlem3 21760 . . . . . . . . 9 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
5352eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
54 vex 3203 . . . . . . . . . 10 𝑠 ∈ V
5531elrnmpt 5372 . . . . . . . . . 10 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
5654, 55ax-mp 5 . . . . . . . . 9 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
575, 1, 25, 50fmfnfmlem2 21759 . . . . . . . . 9 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5856, 57syl5bi 232 . . . . . . . 8 (𝜑 → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5953, 58sylbid 230 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
6052eleq2d 2687 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
61 vex 3203 . . . . . . . . . . . . . 14 𝑤 ∈ V
6231elrnmpt 5372 . . . . . . . . . . . . . 14 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6361, 62ax-mp 5 . . . . . . . . . . . . 13 (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥))
6460, 63syl6bb 276 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6564adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
66 fbssfi 21641 . . . . . . . . . . . . 13 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
675, 66sylan 488 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
681ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
691adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝐿 ∈ (Fil‘𝑋))
7050adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
71 filtop 21659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
721, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑋𝐿)
7372, 5, 253jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
7473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
75 ssfg 21676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
765, 75syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
7776sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
78 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌filGen𝐵) = (𝑌filGen𝐵)
7978imaelfm 21755 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
8074, 77, 79syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
8170, 80sseldd 3604 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
8281adantrr 753 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐹𝑠) ∈ 𝐿)
8369, 82jca 554 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
84 filin 21658 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
85843expa 1265 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8683, 85sylan 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8786adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
88 simprr 796 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
89 elin 3796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥))
9025, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → Fun 𝐹)
91 fvelima 6248 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝑤 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤)
9291ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Fun 𝐹 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9390, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9493ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9590ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → Fun 𝐹)
96 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → 𝑠𝑧)
97 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦𝑠)
98 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑠𝑧𝑦𝑠) → 𝑦𝑧)
9996, 97, 98syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦𝑧)
10090ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → Fun 𝐹)
101 fbelss 21637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
1025, 101sylan 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑠𝐵) → 𝑠𝑌)
10327adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
104102, 103sseqtr4d 3642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
105104adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝑠 ⊆ dom 𝐹)
106105sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
107 fvimacnv 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
108100, 106, 107syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
109108biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
110109impr 649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦 ∈ (𝐹𝑥))
111110ad2ant2rl 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝐹𝑥))
11299, 111elind 3798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (𝐹𝑥)))
113 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∩ (𝐹𝑥)) ⊆ (𝐹𝑥)
114 cnvimass 5485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐹𝑥) ⊆ dom 𝐹
115113, 114sstri 3612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹
116 funfvima2 6493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Fun 𝐹 ∧ (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
117115, 116mpan2 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Fun 𝐹 → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
11895, 112, 117sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
119118anassrs 680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
120119expr 643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
121 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ 𝑥𝑤𝑥))
122 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
123121, 122imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))) ↔ (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
124120, 123syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
125124rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (∃𝑦𝑠 (𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
12694, 125syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
127126impd 447 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → ((𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
12889, 127syl5bi 232 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
129128adantrl 752 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
130129ssrdv 3609 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
131 simprl 794 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡)
132130, 131sstrd 3613 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)
133 filss 21657 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿𝑡𝑋 ∧ ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡𝐿)
13468, 87, 88, 132, 133syl13anc 1328 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
135134exp32 631 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
136 ineq2 3808 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑥) → (𝑧𝑤) = (𝑧 ∩ (𝐹𝑥)))
137136imaeq2d 5466 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑥) → (𝐹 “ (𝑧𝑤)) = (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
138137sseq1d 3632 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡))
139138imbi1d 331 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑥) → (((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
140135, 139syl5ibrcom 237 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
141140rexlimdva 3031 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
142141rexlimdvaa 3032 . . . . . . . . . . . . 13 (𝜑 → (∃𝑠𝐵 𝑠𝑧 → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))))
143142imp 445 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑠𝐵 𝑠𝑧) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14467, 143syldan 487 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14565, 144sylbid 230 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
146145impr 649 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
147 imaeq2 5462 . . . . . . . . . . 11 (𝑠 = (𝑧𝑤) → (𝐹𝑠) = (𝐹 “ (𝑧𝑤)))
148147sseq1d 3632 . . . . . . . . . 10 (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧𝑤)) ⊆ 𝑡))
149148imbi1d 331 . . . . . . . . 9 (𝑠 = (𝑧𝑤) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
150146, 149syl5ibrcom 237 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
151150rexlimdvva 3038 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
15251, 59, 1513jaod 1392 . . . . . 6 (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
15349, 152sylbid 230 . . . . 5 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
154153rexlimdv 3030 . . . 4 (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
155154com23 86 . . 3 (𝜑 → (𝑡𝑋 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡𝑡𝐿)))
156155impd 447 . 2 (𝜑 → ((𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
15747, 156impbid 202 1 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cun 3572  cin 3573  wss 3574  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  ficfi 8316  fBascfbas 19734  filGencfg 19735  Filcfil 21649   FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by:  fmfnfm  21762
  Copyright terms: Public domain W3C validator