MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshco Structured version   Visualization version   GIF version

Theorem cshco 13582
Description: Mapping of words commutes with the "cyclical shift" operation. (Contributed by AV, 12-Nov-2018.)
Assertion
Ref Expression
cshco ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))

Proof of Theorem cshco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6045 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1084 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 cshwfn 13547 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(#‘𝑊)))
433adant3 1081 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑊 cyclShift 𝑁) Fn (0..^(#‘𝑊)))
5 cshwrn 13548 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
653adant3 1081 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ran (𝑊 cyclShift 𝑁) ⊆ 𝐴)
7 fnco 5999 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 cyclShift 𝑁) Fn (0..^(#‘𝑊)) ∧ ran (𝑊 cyclShift 𝑁) ⊆ 𝐴) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(#‘𝑊)))
82, 4, 6, 7syl3anc 1326 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) Fn (0..^(#‘𝑊)))
9 wrdco 13577 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
1093adant2 1080 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
11 simp2 1062 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ ℤ)
12 cshwfn 13547 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(#‘(𝐹𝑊))))
1310, 11, 12syl2anc 693 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(#‘(𝐹𝑊))))
14 lenco 13578 . . . . . 6 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (#‘(𝐹𝑊)) = (#‘𝑊))
15143adant2 1080 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (#‘(𝐹𝑊)) = (#‘𝑊))
1615oveq2d 6666 . . . 4 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(#‘(𝐹𝑊))) = (0..^(#‘𝑊)))
1716fneq2d 5982 . . 3 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝐹𝑊) cyclShift 𝑁) Fn (0..^(#‘(𝐹𝑊))) ↔ ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(#‘𝑊))))
1813, 17mpbid 222 . 2 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) cyclShift 𝑁) Fn (0..^(#‘𝑊)))
1915adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (#‘(𝐹𝑊)) = (#‘𝑊))
2019oveq2d 6666 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (#‘𝑊)))
2120fveq2d 6195 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑊‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))) = (𝑊‘((𝑖 + 𝑁) mod (#‘𝑊))))
2221fveq2d 6195 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊))))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘𝑊)))))
23 wrdfn 13319 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(#‘𝑊)))
24233ad2ant1 1082 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(#‘𝑊)))
2524adantr 481 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑊 Fn (0..^(#‘𝑊)))
26 elfzoelz 12470 . . . . . . . 8 (𝑖 ∈ (0..^(#‘𝑊)) → 𝑖 ∈ ℤ)
27 zaddcl 11417 . . . . . . . 8 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 + 𝑁) ∈ ℤ)
2826, 11, 27syl2anr 495 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝑖 + 𝑁) ∈ ℤ)
29 elfzo0 12508 . . . . . . . . 9 (𝑖 ∈ (0..^(#‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (#‘𝑊) ∈ ℕ ∧ 𝑖 < (#‘𝑊)))
3029simp2bi 1077 . . . . . . . 8 (𝑖 ∈ (0..^(#‘𝑊)) → (#‘𝑊) ∈ ℕ)
3130adantl 482 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (#‘𝑊) ∈ ℕ)
32 zmodfzo 12693 . . . . . . 7 (((𝑖 + 𝑁) ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
3328, 31, 32syl2anc 693 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊)))
3415oveq2d 6666 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → ((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) = ((𝑖 + 𝑁) mod (#‘𝑊)))
3534eleq1d 2686 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) ∈ (0..^(#‘𝑊)) ↔ ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))))
3635adantr 481 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) ∈ (0..^(#‘𝑊)) ↔ ((𝑖 + 𝑁) mod (#‘𝑊)) ∈ (0..^(#‘𝑊))))
3733, 36mpbird 247 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) ∈ (0..^(#‘𝑊)))
38 fvco2 6273 . . . . 5 ((𝑊 Fn (0..^(#‘𝑊)) ∧ ((𝑖 + 𝑁) mod (#‘(𝐹𝑊))) ∈ (0..^(#‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊))))))
3925, 37, 38syl2anc 693 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝐹𝑊)‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊))))))
40 simpl1 1064 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑊 ∈ Word 𝐴)
4111adantr 481 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑁 ∈ ℤ)
42 simpr 477 . . . . 5 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘𝑊)))
43 cshwidxmod 13549 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑖) = (𝑊‘((𝑖 + 𝑁) mod (#‘𝑊))))
4443fveq2d 6195 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘𝑊)))))
4540, 41, 42, 44syl3anc 1326 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = (𝐹‘(𝑊‘((𝑖 + 𝑁) mod (#‘𝑊)))))
4622, 39, 453eqtr4rd 2667 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))))
47 fvco2 6273 . . . 4 (((𝑊 cyclShift 𝑁) Fn (0..^(#‘𝑊)) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
484, 47sylan 488 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (𝐹‘((𝑊 cyclShift 𝑁)‘𝑖)))
4910adantr 481 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (𝐹𝑊) ∈ Word 𝐵)
5015eqcomd 2628 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (#‘𝑊) = (#‘(𝐹𝑊)))
5150oveq2d 6666 . . . . . 6 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (0..^(#‘𝑊)) = (0..^(#‘(𝐹𝑊))))
5251eleq2d 2687 . . . . 5 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(#‘𝑊)) ↔ 𝑖 ∈ (0..^(#‘(𝐹𝑊)))))
5352biimpa 501 . . . 4 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘(𝐹𝑊))))
54 cshwidxmod 13549 . . . 4 (((𝐹𝑊) ∈ Word 𝐵𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(#‘(𝐹𝑊)))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))))
5549, 41, 53, 54syl3anc 1326 . . 3 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → (((𝐹𝑊) cyclShift 𝑁)‘𝑖) = ((𝐹𝑊)‘((𝑖 + 𝑁) mod (#‘(𝐹𝑊)))))
5646, 48, 553eqtr4d 2666 . 2 (((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(#‘𝑊))) → ((𝐹 ∘ (𝑊 cyclShift 𝑁))‘𝑖) = (((𝐹𝑊) cyclShift 𝑁)‘𝑖))
578, 18, 56eqfnfvd 6314 1 ((𝑊 ∈ Word 𝐴𝑁 ∈ ℤ ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 cyclShift 𝑁)) = ((𝐹𝑊) cyclShift 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574   class class class wbr 4653  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936   + caddc 9939   < clt 10074  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465   mod cmo 12668  #chash 13117  Word cword 13291   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator