Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxccatin12 Structured version   Visualization version   GIF version

Theorem pfxccatin12 41425
Description: The subword of a concatenation of two words within both of the concatenated words. Could replace swrdccatin12 13491. (Contributed by AV, 9-May-2020.)
Hypothesis
Ref Expression
pfxccatin12.l 𝐿 = (#‘𝐴)
Assertion
Ref Expression
pfxccatin12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))

Proof of Theorem pfxccatin12
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 13359 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
21adantr 481 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3 elfz0fzfz0 12444 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → 𝑀 ∈ (0...𝑁))
43adantl 482 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ (0...𝑁))
5 elfzuz2 12346 . . . . . . . . 9 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ (ℤ‘0))
65adantl 482 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → 𝐿 ∈ (ℤ‘0))
7 fzss1 12380 . . . . . . . 8 (𝐿 ∈ (ℤ‘0) → (𝐿...(𝐿 + (#‘𝐵))) ⊆ (0...(𝐿 + (#‘𝐵))))
86, 7syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝐿...(𝐿 + (#‘𝐵))) ⊆ (0...(𝐿 + (#‘𝐵))))
9 ccatlen 13360 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘(𝐴 ++ 𝐵)) = ((#‘𝐴) + (#‘𝐵)))
10 pfxccatin12.l . . . . . . . . . . . 12 𝐿 = (#‘𝐴)
1110eqcomi 2631 . . . . . . . . . . 11 (#‘𝐴) = 𝐿
1211oveq1i 6660 . . . . . . . . . 10 ((#‘𝐴) + (#‘𝐵)) = (𝐿 + (#‘𝐵))
139, 12syl6eq 2672 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘(𝐴 ++ 𝐵)) = (𝐿 + (#‘𝐵)))
1413adantr 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (#‘(𝐴 ++ 𝐵)) = (𝐿 + (#‘𝐵)))
1514oveq2d 6666 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (0...(#‘(𝐴 ++ 𝐵))) = (0...(𝐿 + (#‘𝐵))))
168, 15sseqtr4d 3642 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝐿...(𝐿 + (#‘𝐵))) ⊆ (0...(#‘(𝐴 ++ 𝐵))))
1716sseld 3602 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...𝐿)) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))))
1817impr 649 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵))))
19 swrdvalfn 13426 . . . 4 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
202, 4, 18, 19syl3anc 1326 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
21 swrdcl 13419 . . . . . . 7 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
22 pfxcl 41386 . . . . . . 7 (𝐵 ∈ Word 𝑉 → (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉)
2321, 22anim12i 590 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
2423adantr 481 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
25 ccatvalfn 13365 . . . . 5 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))))
2624, 25syl 17 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))))
27 simpll 790 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐴 ∈ Word 𝑉)
28 simprl 794 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝑀 ∈ (0...𝐿))
29 lencl 13324 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ ℕ0)
30 elnn0uz 11725 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ ℕ0 ↔ (#‘𝐴) ∈ (ℤ‘0))
31 eluzfz2 12349 . . . . . . . . . . . . 13 ((#‘𝐴) ∈ (ℤ‘0) → (#‘𝐴) ∈ (0...(#‘𝐴)))
3230, 31sylbi 207 . . . . . . . . . . . 12 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ (0...(#‘𝐴)))
3310, 32syl5eqel 2705 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℕ0𝐿 ∈ (0...(#‘𝐴)))
3429, 33syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(#‘𝐴)))
3534ad2antrr 762 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ (0...(#‘𝐴)))
36 swrdlen 13423 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
3727, 28, 35, 36syl3anc 1326 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
38 simplr 792 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐵 ∈ Word 𝑉)
39 lencl 13324 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℕ0)
4039nn0zd 11480 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (#‘𝐵) ∈ ℤ)
4140adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (#‘𝐵) ∈ ℤ)
42 simpr 477 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))
4341, 42anim12i 590 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((#‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))))
44 elfzmlbp 12450 . . . . . . . . . 10 (((#‘𝐵) ∈ ℤ ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
4543, 44syl 17 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
46 pfxlen 41391 . . . . . . . . 9 ((𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))) → (#‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
4738, 45, 46syl2anc 693 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (#‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
4837, 47oveq12d 6668 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))) = ((𝐿𝑀) + (𝑁𝐿)))
49 elfz2nn0 12431 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
50 nn0cn 11302 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
5150adantl 482 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → 𝐿 ∈ ℂ)
5251adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝐿 ∈ ℂ)
53 nn0cn 11302 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
5453ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑀 ∈ ℂ)
55 zcn 11382 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5655adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → 𝑁 ∈ ℂ)
5752, 54, 563jca 1242 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0)) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
5857ex 450 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
59 elfzelz 12342 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → 𝑁 ∈ ℤ)
6058, 59syl11 33 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
61603adant3 1081 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
6249, 61sylbi 207 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
6362imp 445 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
6463adantl 482 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
65 npncan3 10319 . . . . . . . 8 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
6664, 65syl 17 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
6748, 66eqtr2d 2657 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝑁𝑀) = ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))
6867oveq2d 6666 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (0..^(𝑁𝑀)) = (0..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))))
6968fneq2d 5982 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^(𝑁𝑀)) ↔ ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))))
7026, 69mpbird 247 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))) Fn (0..^(𝑁𝑀)))
71 simprl 794 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))))
72 simpr 477 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
7372anim2i 593 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
7473ancomd 467 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))))
7510swrdccatin12lem3 13490 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘)))
7671, 74, 75sylc 65 . . . . 5 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
7724ad2antrl 764 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
78 simpl 473 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(𝐿𝑀)))
79 nn0fz0 12437 . . . . . . . . . . . . . . 15 ((#‘𝐴) ∈ ℕ0 ↔ (#‘𝐴) ∈ (0...(#‘𝐴)))
8029, 79sylib 208 . . . . . . . . . . . . . 14 (𝐴 ∈ Word 𝑉 → (#‘𝐴) ∈ (0...(#‘𝐴)))
8110, 80syl5eqel 2705 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(#‘𝐴)))
8281ad2antrr 762 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → 𝐿 ∈ (0...(#‘𝐴)))
8327, 28, 823jca 1242 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
8483ad2antrl 764 . . . . . . . . . 10 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘𝐴))))
8584, 36syl 17 . . . . . . . . 9 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
8685oveq2d 6666 . . . . . . . 8 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩))) = (0..^(𝐿𝑀)))
8778, 86eleqtrrd 2704 . . . . . . 7 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
88 df-3an 1039 . . . . . . 7 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
8977, 87, 88sylanbrc 698 . . . . . 6 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
90 ccatval1 13361 . . . . . 6 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ (0..^(#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
9189, 90syl 17 . . . . 5 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐴 substr ⟨𝑀, 𝐿⟩)‘𝑘))
9276, 91eqtr4d 2659 . . . 4 ((𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
93 simprl 794 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))))
9472anim2i 593 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ 𝑘 ∈ (0..^(𝑁𝑀))))
9594ancomd 467 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))))
9610pfxccatin12lem2 41424 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
9793, 95, 96sylc 65 . . . . 5 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
9824ad2antrl 764 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉))
99 elfzuz 12338 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → 𝑁 ∈ (ℤ𝐿))
100 eluzelz 11697 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝐿) → 𝑁 ∈ ℤ)
101 simpll 790 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝐿 ∈ ℕ0)
102 simplr 792 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℕ0)
103 simpr 477 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
104101, 102, 1033jca 1242 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
105104ex 450 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
106105ancoms 469 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
1071063adant3 1081 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
10849, 107sylbi 207 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ ℤ → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
109100, 108syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝐿) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
11099, 109syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → (𝑀 ∈ (0...𝐿) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ)))
111110impcom 446 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
112111adantl 482 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
113112ad2antrl 764 . . . . . . . . 9 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ))
114 swrdccatin12lem1 13484 . . . . . . . . 9 ((𝐿 ∈ ℕ0𝑀 ∈ ℕ0𝑁 ∈ ℤ) → ((𝑘 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝑘 ∈ (0..^(𝐿𝑀))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿)))))
115113, 95, 114sylc 65 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
11627, 28, 82, 36syl3anc 1326 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
117 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐵 ∈ Word 𝑉)
118117adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝐵 ∈ Word 𝑉)
11941adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (#‘𝐵) ∈ ℤ)
120 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))
121119, 120, 44syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝑁𝐿) ∈ (0...(#‘𝐵)))
122118, 121jca 554 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) ∧ (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉)) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))))
123122ex 450 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵)))))
124123adantl 482 . . . . . . . . . . . . 13 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵)))))
125124impcom 446 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (𝐵 ∈ Word 𝑉 ∧ (𝑁𝐿) ∈ (0...(#‘𝐵))))
126125, 46syl 17 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → (#‘(𝐵 prefix (𝑁𝐿))) = (𝑁𝐿))
127116, 126oveq12d 6668 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))) = ((𝐿𝑀) + (𝑁𝐿)))
128116, 127oveq12d 6668 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
129128ad2antrl 764 . . . . . . . 8 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))) = ((𝐿𝑀)..^((𝐿𝑀) + (𝑁𝐿))))
130115, 129eleqtrrd 2704 . . . . . . 7 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → 𝑘 ∈ ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿))))))
131 df-3an 1039 . . . . . . 7 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))) ↔ (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉) ∧ 𝑘 ∈ ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))))
13298, 130, 131sylanbrc 698 . . . . . 6 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))))
133 ccatval2 13362 . . . . . 6 (((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 ∧ (𝐵 prefix (𝑁𝐿)) ∈ Word 𝑉𝑘 ∈ ((#‘(𝐴 substr ⟨𝑀, 𝐿⟩))..^((#‘(𝐴 substr ⟨𝑀, 𝐿⟩)) + (#‘(𝐵 prefix (𝑁𝐿)))))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
134132, 133syl 17 . . . . 5 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘) = ((𝐵 prefix (𝑁𝐿))‘(𝑘 − (#‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
13597, 134eqtr4d 2659 . . . 4 ((¬ 𝑘 ∈ (0..^(𝐿𝑀)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
13692, 135pm2.61ian 831 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = (((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))‘𝑘))
13720, 70, 136eqfnfvd 6314 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿))))
138137ex 450 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (#‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix (𝑁𝐿)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  cop 4183   class class class wbr 4653   Fn wfn 5883  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-pfx 41382
This theorem is referenced by:  pfxccat3  41426  pfxccatpfx2  41428  pfxccatin12d  41432
  Copyright terms: Public domain W3C validator