MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsslss2 Structured version   Visualization version   GIF version

Theorem frlmsslss2 20114
Description: A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmsslss.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsslss.u 𝑈 = (LSubSp‘𝑌)
frlmsslss.b 𝐵 = (Base‘𝑌)
frlmsslss.z 0 = (0g𝑅)
frlmsslss2.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
Assertion
Ref Expression
frlmsslss2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝐽   𝑥,𝑅   𝑥,𝑈   𝑥, 0   𝑥,𝑉   𝑥,𝑌
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmsslss2
StepHypRef Expression
1 frlmsslss2.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
2 frlmsslss.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
3 eqid 2622 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 frlmsslss.b . . . . . . . . 9 𝐵 = (Base‘𝑌)
52, 3, 4frlmbasf 20104 . . . . . . . 8 ((𝐼𝑉𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
653ad2antl2 1224 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
7 ffn 6045 . . . . . . 7 (𝑥:𝐼⟶(Base‘𝑅) → 𝑥 Fn 𝐼)
86, 7syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn 𝐼)
9 simpl3 1066 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝐽𝐼)
10 undif 4049 . . . . . . . 8 (𝐽𝐼 ↔ (𝐽 ∪ (𝐼𝐽)) = 𝐼)
119, 10sylib 208 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∪ (𝐼𝐽)) = 𝐼)
1211fneq2d 5982 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ↔ 𝑥 Fn 𝐼))
138, 12mpbird 247 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥 Fn (𝐽 ∪ (𝐼𝐽)))
14 simpr 477 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 𝑥𝐵)
15 frlmsslss.z . . . . . . 7 0 = (0g𝑅)
16 fvex 6201 . . . . . . 7 (0g𝑅) ∈ V
1715, 16eqeltri 2697 . . . . . 6 0 ∈ V
1817a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → 0 ∈ V)
19 disjdif 4040 . . . . . 6 (𝐽 ∩ (𝐼𝐽)) = ∅
2019a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → (𝐽 ∩ (𝐼𝐽)) = ∅)
21 fnsuppres 7322 . . . . 5 ((𝑥 Fn (𝐽 ∪ (𝐼𝐽)) ∧ (𝑥𝐵0 ∈ V) ∧ (𝐽 ∩ (𝐼𝐽)) = ∅) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2213, 14, 18, 20, 21syl121anc 1331 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) ∧ 𝑥𝐵) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })))
2322rabbidva 3188 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
241, 23syl5eq 2668 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })})
25 difssd 3738 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → (𝐼𝐽) ⊆ 𝐼)
26 frlmsslss.u . . . 4 𝑈 = (LSubSp‘𝑌)
27 eqid 2622 . . . 4 {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} = {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })}
282, 26, 4, 15, 27frlmsslss 20113 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼𝐽) ⊆ 𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
2925, 28syld3an3 1371 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → {𝑥𝐵 ∣ (𝑥 ↾ (𝐼𝐽)) = ((𝐼𝐽) × { 0 })} ∈ 𝑈)
3024, 29eqeltrd 2701 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   × cxp 5112  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650   supp csupp 7295  Basecbs 15857  0gc0g 16100  Ringcrg 18547  LSubSpclss 18932   freeLMod cfrlm 20090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091
This theorem is referenced by:  frlmssuvc1  20133  frlmsslsp  20135
  Copyright terms: Public domain W3C validator