Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem2 Structured version   Visualization version   GIF version

Theorem erdszelem2 31174
Description: Lemma for erdsze 31184. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
erdszelem1.1 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
Assertion
Ref Expression
erdszelem2 ((# “ 𝑆) ∈ Fin ∧ (# “ 𝑆) ⊆ ℕ)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑂
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem erdszelem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfi 12771 . . . . 5 (1...𝐴) ∈ Fin
2 pwfi 8261 . . . . 5 ((1...𝐴) ∈ Fin ↔ 𝒫 (1...𝐴) ∈ Fin)
31, 2mpbi 220 . . . 4 𝒫 (1...𝐴) ∈ Fin
4 erdszelem1.1 . . . . 5 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
5 ssrab2 3687 . . . . 5 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ⊆ 𝒫 (1...𝐴)
64, 5eqsstri 3635 . . . 4 𝑆 ⊆ 𝒫 (1...𝐴)
7 ssfi 8180 . . . 4 ((𝒫 (1...𝐴) ∈ Fin ∧ 𝑆 ⊆ 𝒫 (1...𝐴)) → 𝑆 ∈ Fin)
83, 6, 7mp2an 708 . . 3 𝑆 ∈ Fin
9 hashf 13125 . . . . 5 #:V⟶(ℕ0 ∪ {+∞})
10 ffun 6048 . . . . 5 (#:V⟶(ℕ0 ∪ {+∞}) → Fun #)
119, 10ax-mp 5 . . . 4 Fun #
12 ssv 3625 . . . . 5 𝑆 ⊆ V
139fdmi 6052 . . . . 5 dom # = V
1412, 13sseqtr4i 3638 . . . 4 𝑆 ⊆ dom #
15 fores 6124 . . . 4 ((Fun # ∧ 𝑆 ⊆ dom #) → (# ↾ 𝑆):𝑆onto→(# “ 𝑆))
1611, 14, 15mp2an 708 . . 3 (# ↾ 𝑆):𝑆onto→(# “ 𝑆)
17 fofi 8252 . . 3 ((𝑆 ∈ Fin ∧ (# ↾ 𝑆):𝑆onto→(# “ 𝑆)) → (# “ 𝑆) ∈ Fin)
188, 16, 17mp2an 708 . 2 (# “ 𝑆) ∈ Fin
19 funimass4 6247 . . . 4 ((Fun # ∧ 𝑆 ⊆ dom #) → ((# “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (#‘𝑥) ∈ ℕ))
2011, 14, 19mp2an 708 . . 3 ((# “ 𝑆) ⊆ ℕ ↔ ∀𝑥𝑆 (#‘𝑥) ∈ ℕ)
214erdszelem1 31173 . . . 4 (𝑥𝑆 ↔ (𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥))
22 ne0i 3921 . . . . . 6 (𝐴𝑥𝑥 ≠ ∅)
23223ad2ant3 1084 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ≠ ∅)
24 simp1 1061 . . . . . . 7 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ⊆ (1...𝐴))
25 ssfi 8180 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ 𝑥 ⊆ (1...𝐴)) → 𝑥 ∈ Fin)
261, 24, 25sylancr 695 . . . . . 6 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → 𝑥 ∈ Fin)
27 hashnncl 13157 . . . . . 6 (𝑥 ∈ Fin → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2826, 27syl 17 . . . . 5 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → ((#‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
2923, 28mpbird 247 . . . 4 ((𝑥 ⊆ (1...𝐴) ∧ (𝐹𝑥) Isom < , 𝑂 (𝑥, (𝐹𝑥)) ∧ 𝐴𝑥) → (#‘𝑥) ∈ ℕ)
3021, 29sylbi 207 . . 3 (𝑥𝑆 → (#‘𝑥) ∈ ℕ)
3120, 30mprgbir 2927 . 2 (# “ 𝑆) ⊆ ℕ
3218, 31pm3.2i 471 1 ((# “ 𝑆) ∈ Fin ∧ (# “ 𝑆) ⊆ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  {crab 2916  Vcvv 3200  cun 3572  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  dom cdm 5114  cres 5116  cima 5117  Fun wfun 5882  wf 5884  ontowfo 5886  cfv 5888   Isom wiso 5889  (class class class)co 6650  Fincfn 7955  1c1 9937  +∞cpnf 10071   < clt 10074  cn 11020  0cn0 11292  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  erdszelem5  31177  erdszelem6  31178  erdszelem7  31179  erdszelem8  31180
  Copyright terms: Public domain W3C validator