| Step | Hyp | Ref
| Expression |
| 1 | | uzf 11690 |
. . . . . . . 8
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 2 | | ffn 6045 |
. . . . . . . 8
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢
ℤ≥ Fn ℤ |
| 4 | | lmflf.1 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 5 | | uzssz 11707 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 6 | 4, 5 | eqsstri 3635 |
. . . . . . 7
⊢ 𝑍 ⊆
ℤ |
| 7 | | imaeq2 5462 |
. . . . . . . . 9
⊢ (𝑦 =
(ℤ≥‘𝑗) → (𝐹 “ 𝑦) = (𝐹 “ (ℤ≥‘𝑗))) |
| 8 | 7 | sseq1d 3632 |
. . . . . . . 8
⊢ (𝑦 =
(ℤ≥‘𝑗) → ((𝐹 “ 𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥)) |
| 9 | 8 | rexima 6497 |
. . . . . . 7
⊢
((ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ≥
“ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥 ↔ ∃𝑗 ∈ 𝑍 (𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥)) |
| 10 | 3, 6, 9 | mp2an 708 |
. . . . . 6
⊢
(∃𝑦 ∈
(ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥 ↔ ∃𝑗 ∈ 𝑍 (𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥) |
| 11 | | simpl3 1066 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → 𝐹:𝑍⟶𝑋) |
| 12 | | ffun 6048 |
. . . . . . . . 9
⊢ (𝐹:𝑍⟶𝑋 → Fun 𝐹) |
| 13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → Fun 𝐹) |
| 14 | | uzss 11708 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
| 15 | 14, 4 | eleq2s 2719 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑍 → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
| 16 | 15 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆
(ℤ≥‘𝑀)) |
| 17 | | fdm 6051 |
. . . . . . . . . . 11
⊢ (𝐹:𝑍⟶𝑋 → dom 𝐹 = 𝑍) |
| 18 | 11, 17 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → dom 𝐹 = 𝑍) |
| 19 | 18, 4 | syl6eq 2672 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → dom 𝐹 = (ℤ≥‘𝑀)) |
| 20 | 16, 19 | sseqtr4d 3642 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆ dom 𝐹) |
| 21 | | funimass4 6247 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥)) |
| 22 | 13, 20, 21 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑗 ∈ 𝑍) → ((𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥)) |
| 23 | 22 | rexbidva 3049 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (∃𝑗 ∈ 𝑍 (𝐹 “ (ℤ≥‘𝑗)) ⊆ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥)) |
| 24 | 10, 23 | syl5rbb 273 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥)) |
| 25 | 24 | imbi2d 330 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → ((𝑃 ∈ 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥) ↔ (𝑃 ∈ 𝑥 → ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥))) |
| 26 | 25 | ralbidv 2986 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥))) |
| 27 | 26 | anbi2d 740 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → ((𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥)) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 28 | | simp1 1061 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 29 | | simp2 1062 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → 𝑀 ∈ ℤ) |
| 30 | | simp3 1063 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → 𝐹:𝑍⟶𝑋) |
| 31 | | eqidd 2623 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 32 | 28, 4, 29, 30, 31 | lmbrf 21064 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑥)))) |
| 33 | 4 | uzfbas 21702 |
. . 3
⊢ (𝑀 ∈ ℤ →
(ℤ≥ “ 𝑍) ∈ (fBas‘𝑍)) |
| 34 | | lmflf.2 |
. . . 4
⊢ 𝐿 = (𝑍filGen(ℤ≥ “ 𝑍)) |
| 35 | 34 | flffbas 21799 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ≥
“ 𝑍) ∈
(fBas‘𝑍) ∧ 𝐹:𝑍⟶𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 36 | 33, 35 | syl3an2 1360 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → ∃𝑦 ∈ (ℤ≥ “ 𝑍)(𝐹 “ 𝑦) ⊆ 𝑥)))) |
| 37 | 27, 32, 36 | 3bitr4d 300 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶𝑋) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹))) |