| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐼 ∈ 𝑉) |
| 2 | | simpl2 1065 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐽 ⊆ 𝐼) |
| 3 | | sswrd 13313 |
. . . . . . . . 9
⊢ (𝐽 ⊆ 𝐼 → Word 𝐽 ⊆ Word 𝐼) |
| 4 | 2, 3 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → Word 𝐽 ⊆ Word 𝐼) |
| 5 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐽) |
| 6 | 4, 5 | sseldd 3604 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ Word 𝐼) |
| 7 | | frmdmnd.m |
. . . . . . . 8
⊢ 𝑀 = (freeMnd‘𝐼) |
| 8 | | frmdgsum.u |
. . . . . . . 8
⊢ 𝑈 =
(varFMnd‘𝐼) |
| 9 | 7, 8 | frmdgsum 17399 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) |
| 10 | 1, 6, 9 | syl2anc 693 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) = 𝑥) |
| 11 | | simpl3 1066 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝐴 ∈ (SubMnd‘𝑀)) |
| 12 | | wrdf 13310 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Word 𝐽 → 𝑥:(0..^(#‘𝑥))⟶𝐽) |
| 13 | 12 | ad2antll 765 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥:(0..^(#‘𝑥))⟶𝐽) |
| 14 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝑥:(0..^(#‘𝑥))⟶𝐽 → ran 𝑥 ⊆ 𝐽) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran 𝑥 ⊆ 𝐽) |
| 16 | | cores 5638 |
. . . . . . . . 9
⊢ (ran
𝑥 ⊆ 𝐽 → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) |
| 17 | 15, 16 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) = (𝑈 ∘ 𝑥)) |
| 18 | 8 | vrmdf 17395 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ 𝑉 → 𝑈:𝐼⟶Word 𝐼) |
| 19 | 18 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈:𝐼⟶Word 𝐼) |
| 20 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑈:𝐼⟶Word 𝐼 → 𝑈 Fn 𝐼) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝑈 Fn 𝐼) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑈 Fn 𝐼) |
| 23 | | fnssres 6004 |
. . . . . . . . . . 11
⊢ ((𝑈 Fn 𝐼 ∧ 𝐽 ⊆ 𝐼) → (𝑈 ↾ 𝐽) Fn 𝐽) |
| 24 | 22, 2, 23 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽) Fn 𝐽) |
| 25 | | df-ima 5127 |
. . . . . . . . . . 11
⊢ (𝑈 “ 𝐽) = ran (𝑈 ↾ 𝐽) |
| 26 | | simprl 794 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 “ 𝐽) ⊆ 𝐴) |
| 27 | 25, 26 | syl5eqssr 3650 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ran (𝑈 ↾ 𝐽) ⊆ 𝐴) |
| 28 | | df-f 5892 |
. . . . . . . . . 10
⊢ ((𝑈 ↾ 𝐽):𝐽⟶𝐴 ↔ ((𝑈 ↾ 𝐽) Fn 𝐽 ∧ ran (𝑈 ↾ 𝐽) ⊆ 𝐴)) |
| 29 | 24, 27, 28 | sylanbrc 698 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ↾ 𝐽):𝐽⟶𝐴) |
| 30 | | wrdco 13577 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝐽 ∧ (𝑈 ↾ 𝐽):𝐽⟶𝐴) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) |
| 31 | 5, 29, 30 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → ((𝑈 ↾ 𝐽) ∘ 𝑥) ∈ Word 𝐴) |
| 32 | 17, 31 | eqeltrrd 2702 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑈 ∘ 𝑥) ∈ Word 𝐴) |
| 33 | | gsumwsubmcl 17375 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubMnd‘𝑀) ∧ (𝑈 ∘ 𝑥) ∈ Word 𝐴) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) |
| 34 | 11, 32, 33 | syl2anc 693 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → (𝑀 Σg (𝑈 ∘ 𝑥)) ∈ 𝐴) |
| 35 | 10, 34 | eqeltrrd 2702 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ ((𝑈 “ 𝐽) ⊆ 𝐴 ∧ 𝑥 ∈ Word 𝐽)) → 𝑥 ∈ 𝐴) |
| 36 | 35 | expr 643 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → (𝑥 ∈ Word 𝐽 → 𝑥 ∈ 𝐴)) |
| 37 | 36 | ssrdv 3609 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ (𝑈 “ 𝐽) ⊆ 𝐴) → Word 𝐽 ⊆ 𝐴) |
| 38 | 37 | ex 450 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 → Word 𝐽 ⊆ 𝐴)) |
| 39 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝐼 ∈ 𝑉) |
| 40 | | simp2 1062 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ 𝐼) |
| 41 | 40 | sselda 3603 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐼) |
| 42 | 8 | vrmdval 17394 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (𝑈‘𝑥) = 〈“𝑥”〉) |
| 43 | 39, 41, 42 | syl2anc 693 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) = 〈“𝑥”〉) |
| 44 | | simpr 477 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) |
| 45 | 44 | s1cld 13383 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → 〈“𝑥”〉 ∈ Word 𝐽) |
| 46 | 43, 45 | eqeltrd 2701 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) ∧ 𝑥 ∈ 𝐽) → (𝑈‘𝑥) ∈ Word 𝐽) |
| 47 | 46 | ralrimiva 2966 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽) |
| 48 | | fnfun 5988 |
. . . . . 6
⊢ (𝑈 Fn 𝐼 → Fun 𝑈) |
| 49 | 21, 48 | syl 17 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → Fun 𝑈) |
| 50 | | fndm 5990 |
. . . . . . 7
⊢ (𝑈 Fn 𝐼 → dom 𝑈 = 𝐼) |
| 51 | 21, 50 | syl 17 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → dom 𝑈 = 𝐼) |
| 52 | 40, 51 | sseqtr4d 3642 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → 𝐽 ⊆ dom 𝑈) |
| 53 | | funimass4 6247 |
. . . . 5
⊢ ((Fun
𝑈 ∧ 𝐽 ⊆ dom 𝑈) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) |
| 54 | 49, 52, 53 | syl2anc 693 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ Word 𝐽 ↔ ∀𝑥 ∈ 𝐽 (𝑈‘𝑥) ∈ Word 𝐽)) |
| 55 | 47, 54 | mpbird 247 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (𝑈 “ 𝐽) ⊆ Word 𝐽) |
| 56 | | sstr2 3610 |
. . 3
⊢ ((𝑈 “ 𝐽) ⊆ Word 𝐽 → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) |
| 57 | 55, 56 | syl 17 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → (Word 𝐽 ⊆ 𝐴 → (𝑈 “ 𝐽) ⊆ 𝐴)) |
| 58 | 38, 57 | impbid 202 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼 ∧ 𝐴 ∈ (SubMnd‘𝑀)) → ((𝑈 “ 𝐽) ⊆ 𝐴 ↔ Word 𝐽 ⊆ 𝐴)) |