| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 2 | 1 | cnprcl 21049 |
. . . . 5
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 ∈ ∪ 𝐽) |
| 3 | 2 | a1i 11 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 ∈ ∪ 𝐽)) |
| 4 | | ghmcnp.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝐺) |
| 5 | | ghmcnp.x |
. . . . . . . . . 10
⊢ 𝑋 = (Base‘𝐺) |
| 6 | 4, 5 | tmdtopon 21885 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋)) |
| 7 | 6 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 8 | 7 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 9 | | simpl2 1065 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐻 ∈ TopMnd) |
| 10 | | ghmcnp.k |
. . . . . . . . 9
⊢ 𝐾 = (TopOpen‘𝐻) |
| 11 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 12 | 10, 11 | tmdtopon 21885 |
. . . . . . . 8
⊢ (𝐻 ∈ TopMnd → 𝐾 ∈
(TopOn‘(Base‘𝐻))) |
| 13 | 9, 12 | syl 17 |
. . . . . . 7
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘(Base‘𝐻))) |
| 14 | | simpr 477 |
. . . . . . 7
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 15 | | cnpf2 21054 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 16 | 8, 13, 14, 15 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 17 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 18 | 14 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 19 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) = (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) |
| 20 | 19 | mptpreima 5628 |
. . . . . . . . . . . . . 14
⊢ (◡(𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) “ 𝑦) = {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} |
| 21 | 9 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐻 ∈ TopMnd) |
| 22 | 16 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 23 | | simpll3 1102 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 24 | | ghmgrp1 17662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐺 ∈ Grp) |
| 26 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝑥 ∈ 𝑋) |
| 27 | 2 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ ∪ 𝐽) |
| 28 | | toponuni 20719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 29 | 8, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝑋 = ∪ 𝐽) |
| 30 | 27, 29 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ 𝑋) |
| 31 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐴 ∈ 𝑋) |
| 32 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 33 | 5, 32 | grpsubcl 17495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑋) |
| 34 | 25, 26, 31, 33 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑋) |
| 35 | 22, 34 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g‘𝐺)𝐴)) ∈ (Base‘𝐻)) |
| 36 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 37 | 19, 11, 36, 10 | tmdlactcn 21906 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ∈ TopMnd ∧ (𝐹‘(𝑥(-g‘𝐺)𝐴)) ∈ (Base‘𝐻)) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) ∈ (𝐾 Cn 𝐾)) |
| 38 | 21, 35, 37 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) ∈ (𝐾 Cn 𝐾)) |
| 39 | | simprrl 804 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝑦 ∈ 𝐾) |
| 40 | | cnima 21069 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) ∈ (𝐾 Cn 𝐾) ∧ 𝑦 ∈ 𝐾) → (◡(𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) “ 𝑦) ∈ 𝐾) |
| 41 | 38, 39, 40 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (◡(𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤)) “ 𝑦) ∈ 𝐾) |
| 42 | 20, 41 | syl5eqelr 2706 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} ∈ 𝐾) |
| 43 | 22, 31 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘𝐴) ∈ (Base‘𝐻)) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-g‘𝐻) = (-g‘𝐻) |
| 45 | 5, 32, 44 | ghmsub 17668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘(𝑥(-g‘𝐺)𝐴)) = ((𝐹‘𝑥)(-g‘𝐻)(𝐹‘𝐴))) |
| 46 | 23, 26, 31, 45 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g‘𝐺)𝐴)) = ((𝐹‘𝑥)(-g‘𝐻)(𝐹‘𝐴))) |
| 47 | 46 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴)) = (((𝐹‘𝑥)(-g‘𝐻)(𝐹‘𝐴))(+g‘𝐻)(𝐹‘𝐴))) |
| 48 | | ghmgrp2 17663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp) |
| 49 | 23, 48 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐻 ∈ Grp) |
| 50 | 22, 26 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘𝑥) ∈ (Base‘𝐻)) |
| 51 | 11, 36, 44 | grpnpcan 17507 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐻) ∧ (𝐹‘𝐴) ∈ (Base‘𝐻)) → (((𝐹‘𝑥)(-g‘𝐻)(𝐹‘𝐴))(+g‘𝐻)(𝐹‘𝐴)) = (𝐹‘𝑥)) |
| 52 | 49, 50, 43, 51 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (((𝐹‘𝑥)(-g‘𝐻)(𝐹‘𝐴))(+g‘𝐻)(𝐹‘𝐴)) = (𝐹‘𝑥)) |
| 53 | 47, 52 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴)) = (𝐹‘𝑥)) |
| 54 | | simprrr 805 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘𝑥) ∈ 𝑦) |
| 55 | 53, 54 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴)) ∈ 𝑦) |
| 56 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = (𝐹‘𝐴) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) = ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴))) |
| 57 | 56 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐹‘𝐴) → (((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴)) ∈ 𝑦)) |
| 58 | 57 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹‘𝐴) ∈ (Base‘𝐻) ∧ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝐴)) ∈ 𝑦)) |
| 59 | 43, 55, 58 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (𝐹‘𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦}) |
| 60 | | cnpimaex 21060 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} ∈ 𝐾 ∧ (𝐹‘𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦}) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦})) |
| 61 | 18, 42, 59, 60 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → ∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦})) |
| 62 | | ssrab 3680 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹 “ 𝑧) ⊆ (Base‘𝐻) ∧ ∀𝑤 ∈ (𝐹 “ 𝑧)((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦)) |
| 63 | 62 | simprbi 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} → ∀𝑤 ∈ (𝐹 “ 𝑧)((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦) |
| 64 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 65 | | ffn 6045 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋⟶(Base‘𝐻) → 𝐹 Fn 𝑋) |
| 66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → 𝐹 Fn 𝑋) |
| 67 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 68 | | toponss 20731 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
| 69 | 67, 68 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → 𝑧 ⊆ 𝑋) |
| 70 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝐹‘𝑣) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) = ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣))) |
| 71 | 70 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝐹‘𝑣) → (((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦)) |
| 72 | 71 | ralima 6498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝑋 ∧ 𝑧 ⊆ 𝑋) → (∀𝑤 ∈ (𝐹 “ 𝑧)((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦)) |
| 73 | 66, 69, 72 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → (∀𝑤 ∈ (𝐹 “ 𝑧)((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦)) |
| 74 | 63, 73 | syl5ib 234 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → ((𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦} → ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦)) |
| 75 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) = (𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) |
| 76 | 75 | mptpreima 5628 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) “ 𝑧) = {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} |
| 77 | | simpl1 1064 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺 ∈ TopMnd) |
| 78 | 77 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝐺 ∈ TopMnd) |
| 79 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝐺 ∈ Grp) |
| 80 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝐴 ∈ 𝑋) |
| 81 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝑥 ∈ 𝑋) |
| 82 | 5, 32 | grpsubcl 17495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴(-g‘𝐺)𝑥) ∈ 𝑋) |
| 83 | 79, 80, 81, 82 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → (𝐴(-g‘𝐺)𝑥) ∈ 𝑋) |
| 84 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 85 | 75, 5, 84, 4 | tmdlactcn 21906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ TopMnd ∧ (𝐴(-g‘𝐺)𝑥) ∈ 𝑋) → (𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) ∈ (𝐽 Cn 𝐽)) |
| 86 | 78, 83, 85 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → (𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) ∈ (𝐽 Cn 𝐽)) |
| 87 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝑧 ∈ 𝐽) |
| 88 | | cnima 21069 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧 ∈ 𝐽) → (◡(𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) “ 𝑧) ∈ 𝐽) |
| 89 | 86, 87, 88 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → (◡(𝑤 ∈ 𝑋 ↦ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) “ 𝑧) ∈ 𝐽) |
| 90 | 76, 89 | syl5eqelr 2706 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ∈ 𝐽) |
| 91 | 5, 84, 32 | grpnpcan 17507 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) = 𝐴) |
| 92 | 79, 80, 81, 91 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) = 𝐴) |
| 93 | | simprrl 804 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝐴 ∈ 𝑧) |
| 94 | 92, 93 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧) |
| 95 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) = ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥)) |
| 96 | 95 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑥 → (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 ↔ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧)) |
| 97 | 96 | elrab 3363 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ↔ (𝑥 ∈ 𝑋 ∧ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧)) |
| 98 | 81, 94, 97 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) |
| 99 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦) |
| 100 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) → (𝐹‘𝑣) = (𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) |
| 101 | 100 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) = ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)))) |
| 102 | 101 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 = ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) → (((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) ∈ 𝑦)) |
| 103 | 102 | rspccv 3306 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑣 ∈
𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦 → (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) ∈ 𝑦)) |
| 104 | 99, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) ∈ 𝑦)) |
| 105 | 104 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopMnd ∧ 𝐻 ∈
TopMnd ∧ 𝐹 ∈
(𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) ∈ 𝑦)) |
| 106 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 107 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (𝑥(-g‘𝐺)𝐴) ∈ 𝑋) |
| 108 | 106, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 109 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 110 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 111 | 108, 109,
110, 82 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (𝐴(-g‘𝐺)𝑥) ∈ 𝑋) |
| 112 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
| 113 | 5, 84 | grpcl 17430 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺 ∈ Grp ∧ (𝐴(-g‘𝐺)𝑥) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑋) |
| 114 | 108, 111,
112, 113 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑋) |
| 115 | 5, 84, 36 | ghmlin 17665 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑥(-g‘𝐺)𝐴) ∈ 𝑋 ∧ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑋) → (𝐹‘((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) = ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)))) |
| 116 | 106, 107,
114, 115 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (𝐹‘((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) = ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)))) |
| 117 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 118 | 5, 32, 117 | grpinvsub 17497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘(𝑥(-g‘𝐺)𝐴)) = (𝐴(-g‘𝐺)𝑥)) |
| 119 | 108, 110,
109, 118 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((invg‘𝐺)‘(𝑥(-g‘𝐺)𝐴)) = (𝐴(-g‘𝐺)𝑥)) |
| 120 | 119 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((invg‘𝐺)‘(𝑥(-g‘𝐺)𝐴))) = ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)(𝐴(-g‘𝐺)𝑥))) |
| 121 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 122 | 5, 84, 121, 117 | grprinv 17469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐺 ∈ Grp ∧ (𝑥(-g‘𝐺)𝐴) ∈ 𝑋) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((invg‘𝐺)‘(𝑥(-g‘𝐺)𝐴))) = (0g‘𝐺)) |
| 123 | 108, 107,
122 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((invg‘𝐺)‘(𝑥(-g‘𝐺)𝐴))) = (0g‘𝐺)) |
| 124 | 120, 123 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)(𝐴(-g‘𝐺)𝑥)) = (0g‘𝐺)) |
| 125 | 124 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)(𝐴(-g‘𝐺)𝑥))(+g‘𝐺)𝑤) = ((0g‘𝐺)(+g‘𝐺)𝑤)) |
| 126 | 5, 84 | grpass 17431 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺 ∈ Grp ∧ ((𝑥(-g‘𝐺)𝐴) ∈ 𝑋 ∧ (𝐴(-g‘𝐺)𝑥) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)(𝐴(-g‘𝐺)𝑥))(+g‘𝐺)𝑤) = ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) |
| 127 | 108, 107,
111, 112, 126 | syl13anc 1328 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)(𝐴(-g‘𝐺)𝑥))(+g‘𝐺)𝑤) = ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) |
| 128 | 5, 84, 121 | grplid 17452 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)𝑤) = 𝑤) |
| 129 | 108, 112,
128 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((0g‘𝐺)(+g‘𝐺)𝑤) = 𝑤) |
| 130 | 125, 127,
129 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤)) = 𝑤) |
| 131 | 130 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (𝐹‘((𝑥(-g‘𝐺)𝐴)(+g‘𝐺)((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) = (𝐹‘𝑤)) |
| 132 | 116, 131 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) = (𝐹‘𝑤)) |
| 133 | 132 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐺 ∈
TopMnd ∧ 𝐻 ∈
TopMnd ∧ 𝐹 ∈
(𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) = (𝐹‘𝑤)) |
| 134 | 133 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐺 ∈
TopMnd ∧ 𝐻 ∈
TopMnd ∧ 𝐹 ∈
(𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤))) ∈ 𝑦 ↔ (𝐹‘𝑤) ∈ 𝑦)) |
| 135 | 105, 134 | sylibd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐺 ∈
TopMnd ∧ 𝐻 ∈
TopMnd ∧ 𝐹 ∈
(𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) ∧ 𝑤 ∈ 𝑋) → (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → (𝐹‘𝑤) ∈ 𝑦)) |
| 136 | 135 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ∀𝑤 ∈ 𝑋 (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → (𝐹‘𝑤) ∈ 𝑦)) |
| 137 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑤 → (𝐹‘𝑣) = (𝐹‘𝑤)) |
| 138 | 137 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 = 𝑤 → ((𝐹‘𝑣) ∈ 𝑦 ↔ (𝐹‘𝑤) ∈ 𝑦)) |
| 139 | 138 | ralrab2 3372 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑣 ∈
{𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} (𝐹‘𝑣) ∈ 𝑦 ↔ ∀𝑤 ∈ 𝑋 (((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧 → (𝐹‘𝑤) ∈ 𝑦)) |
| 140 | 136, 139 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} (𝐹‘𝑣) ∈ 𝑦) |
| 141 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻)) |
| 142 | | ffun 6048 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:𝑋⟶(Base‘𝐻) → Fun 𝐹) |
| 143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → Fun 𝐹) |
| 144 | | ssrab2 3687 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ⊆ 𝑋 |
| 145 | | fdm 6051 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹:𝑋⟶(Base‘𝐻) → dom 𝐹 = 𝑋) |
| 146 | 141, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → dom 𝐹 = 𝑋) |
| 147 | 144, 146 | syl5sseqr 3654 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) |
| 148 | | funimass4 6247 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐹 ∧ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) → ((𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} (𝐹‘𝑣) ∈ 𝑦)) |
| 149 | 143, 147,
148 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ((𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} (𝐹‘𝑣) ∈ 𝑦)) |
| 150 | 140, 149 | mpbird 247 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → (𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦) |
| 151 | | eleq2 2690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧})) |
| 152 | | imaeq2 5462 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} → (𝐹 “ 𝑢) = (𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧})) |
| 153 | 152 | sseq1d 3632 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ (𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) |
| 154 | 151, 153 | anbi12d 747 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} → ((𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦))) |
| 155 | 154 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ∈ 𝐽 ∧ (𝑥 ∈ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤 ∈ 𝑋 ∣ ((𝐴(-g‘𝐺)𝑥)(+g‘𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 156 | 90, 98, 150, 155 | syl12anc 1324 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ (𝑧 ∈ 𝐽 ∧ (𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 157 | 156 | expr 643 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → ((𝐴 ∈ 𝑧 ∧ ∀𝑣 ∈ 𝑧 ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)(𝐹‘𝑣)) ∈ 𝑦) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))) |
| 158 | 74, 157 | sylan2d 499 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) ∧ 𝑧 ∈ 𝐽) → ((𝐴 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦}) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))) |
| 159 | 158 | rexlimdva 3031 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → (∃𝑧 ∈ 𝐽 (𝐴 ∈ 𝑧 ∧ (𝐹 “ 𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g‘𝐺)𝐴))(+g‘𝐻)𝑤) ∈ 𝑦}) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))) |
| 160 | 61, 159 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 161 | 160 | anassrs 680 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) ∧ (𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦)) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
| 162 | 161 | expr 643 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ TopMnd
∧ 𝐻 ∈ TopMnd ∧
𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝐾) → ((𝐹‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))) |
| 163 | 162 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))) |
| 164 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 165 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘(Base‘𝐻))) |
| 166 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 167 | | iscnp 21041 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))))) |
| 168 | 164, 165,
166, 167 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑥) ∈ 𝑦 → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦))))) |
| 169 | 17, 163, 168 | mpbir2and 957 |
. . . . . . 7
⊢ ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 170 | 169 | ralrimiva 2966 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
| 171 | | cncnp 21084 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 172 | 8, 13, 171 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 173 | 16, 170, 172 | mpbir2and 957 |
. . . . 5
⊢ (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 174 | 173 | ex 450 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
| 175 | 3, 174 | jcad 555 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 ∈ ∪ 𝐽 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) |
| 176 | 1 | cncnpi 21082 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ ∪ 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 177 | 176 | ancoms 469 |
. . 3
⊢ ((𝐴 ∈ ∪ 𝐽
∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| 178 | 175, 177 | impbid1 215 |
. 2
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ ∪ 𝐽 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) |
| 179 | 7, 28 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝑋 = ∪ 𝐽) |
| 180 | 179 | eleq2d 2687 |
. . 3
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ ∪ 𝐽)) |
| 181 | 180 | anbi1d 741 |
. 2
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → ((𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 ∈ ∪ 𝐽 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) |
| 182 | 178, 181 | bitr4d 271 |
1
⊢ ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 ∈ 𝑋 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)))) |