| Step | Hyp | Ref
| Expression |
| 1 | | subfacp1lem.a |
. . . . . . . 8
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| 2 | | fzfi 12771 |
. . . . . . . . 9
⊢
(1...(𝑁 + 1)) ∈
Fin |
| 3 | | deranglem 31148 |
. . . . . . . . 9
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
| 5 | 1, 4 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐴 ∈ Fin |
| 6 | | subfacp1lem5.b |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} |
| 7 | | ssrab2 3687 |
. . . . . . . 8
⊢ {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} ⊆ 𝐴 |
| 8 | 6, 7 | eqsstri 3635 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝐴 |
| 9 | | ssfi 8180 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| 10 | 5, 8, 9 | mp2an 708 |
. . . . . 6
⊢ 𝐵 ∈ Fin |
| 11 | 10 | elexi 3213 |
. . . . 5
⊢ 𝐵 ∈ V |
| 12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ V) |
| 13 | | subfacp1lem5.c |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| 14 | | fzfi 12771 |
. . . . . . . 8
⊢
(2...(𝑁 + 1)) ∈
Fin |
| 15 | | deranglem 31148 |
. . . . . . . 8
⊢
((2...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
| 17 | 13, 16 | eqeltri 2697 |
. . . . . 6
⊢ 𝐶 ∈ Fin |
| 18 | 17 | elexi 3213 |
. . . . 5
⊢ 𝐶 ∈ V |
| 19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ V) |
| 20 | | derang.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| 21 | | subfac.n |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
| 22 | | subfacp1lem1.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 23 | | subfacp1lem1.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
| 24 | | subfacp1lem1.x |
. . . . . . . . . . . . 13
⊢ 𝑀 ∈ V |
| 25 | | subfacp1lem1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
| 26 | | subfacp1lem5.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
| 27 | | f1oi 6174 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ 𝐾):𝐾–1-1-onto→𝐾 |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( I ↾ 𝐾):𝐾–1-1-onto→𝐾) |
| 29 | 20, 21, 1, 22, 23, 24, 25, 26, 28 | subfacp1lem2a 31162 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
| 30 | 29 | simp1d 1073 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 32 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 33 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) |
| 34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
| 35 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) |
| 36 | 35 | neeq1d 2853 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) ≠ 1 ↔ (𝑏‘𝑀) ≠ 1)) |
| 37 | 34, 36 | anbi12d 747 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 38 | 37, 6 | elrab2 3366 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 39 | 32, 38 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 40 | 39 | simpld 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
| 41 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
| 42 | | f1oeq1 6127 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 43 | | fveq1 6190 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
| 44 | 43 | neeq1d 2853 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
| 45 | 44 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 46 | 42, 45 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) |
| 47 | 41, 46, 1 | elab2 3354 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 48 | 40, 47 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 49 | 48 | simpld 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 50 | | f1oco 6159 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 51 | 31, 49, 50 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 52 | | f1of1 6136 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 53 | | df-f1 5893 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡(𝐹 ∘ 𝑏))) |
| 54 | 53 | simprbi 480 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡(𝐹 ∘ 𝑏)) |
| 55 | 51, 52, 54 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡(𝐹 ∘ 𝑏)) |
| 56 | | f1ofn 6138 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 57 | | fnresdm 6000 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏)) |
| 58 | | f1oeq1 6127 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 59 | 51, 56, 57, 58 | 4syl 19 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 60 | 51, 59 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 61 | | f1ofo 6144 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
| 62 | 60, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
| 63 | | 1ex 10035 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
| 64 | 63, 63 | f1osn 6176 |
. . . . . . . . . 10
⊢ {〈1,
1〉}:{1}–1-1-onto→{1} |
| 65 | 51, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 66 | 22 | peano2nnd 11037 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 67 | | nnuz 11723 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 68 | 66, 67 | syl6eleq 2711 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘1)) |
| 69 | | eluzfz1 12348 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 + 1))) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ (1...(𝑁 + 1))) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 1 ∈ (1...(𝑁 + 1))) |
| 72 | | fnressn 6425 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
| 73 | 65, 71, 72 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
| 74 | | f1of 6137 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 75 | 49, 74 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 76 | | fvco3 6275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
| 77 | 75, 71, 76 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
| 78 | 39 | simprd 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1)) |
| 79 | 78 | simpld 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) |
| 80 | 79 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑏‘1)) = (𝐹‘𝑀)) |
| 81 | 29 | simp3d 1075 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘𝑀) = 1) |
| 82 | 81 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑀) = 1) |
| 83 | 77, 80, 82 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = 1) |
| 84 | 83 | opeq2d 4409 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 〈1, ((𝐹 ∘ 𝑏)‘1)〉 = 〈1,
1〉) |
| 85 | 84 | sneqd 4189 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {〈1, ((𝐹 ∘ 𝑏)‘1)〉} = {〈1,
1〉}) |
| 86 | 73, 85 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1,
1〉}) |
| 87 | | f1oeq1 6127 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, 1〉} →
(((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1} ↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
| 89 | 64, 88 | mpbiri 248 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}) |
| 90 | | f1ofo 6144 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
→ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
| 91 | 89, 90 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
| 92 | | resdif 6157 |
. . . . . . . 8
⊢ ((Fun
◡(𝐹 ∘ 𝑏) ∧ ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
| 93 | 55, 62, 91, 92 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
| 94 | | fzsplit 12367 |
. . . . . . . . . . . 12
⊢ (1 ∈
(1...(𝑁 + 1)) →
(1...(𝑁 + 1)) = ((1...1)
∪ ((1 + 1)...(𝑁 +
1)))) |
| 95 | 70, 94 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1)))) |
| 96 | | 1z 11407 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
| 97 | | fzsn 12383 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (1...1) =
{1} |
| 99 | | 1p1e2 11134 |
. . . . . . . . . . . . 13
⊢ (1 + 1) =
2 |
| 100 | 99 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ ((1 +
1)...(𝑁 + 1)) = (2...(𝑁 + 1)) |
| 101 | 98, 100 | uneq12i 3765 |
. . . . . . . . . . 11
⊢ ((1...1)
∪ ((1 + 1)...(𝑁 + 1)))
= ({1} ∪ (2...(𝑁 +
1))) |
| 102 | 95, 101 | syl6req 2673 |
. . . . . . . . . 10
⊢ (𝜑 → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 103 | 70 | snssd 4340 |
. . . . . . . . . . 11
⊢ (𝜑 → {1} ⊆ (1...(𝑁 + 1))) |
| 104 | | incom 3805 |
. . . . . . . . . . . 12
⊢ ({1}
∩ (2...(𝑁 + 1))) =
((2...(𝑁 + 1)) ∩
{1}) |
| 105 | | 1lt2 11194 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
| 106 | | 1re 10039 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
| 107 | | 2re 11090 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ |
| 108 | 106, 107 | ltnlei 10158 |
. . . . . . . . . . . . . . 15
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
| 109 | 105, 108 | mpbi 220 |
. . . . . . . . . . . . . 14
⊢ ¬ 2
≤ 1 |
| 110 | | elfzle1 12344 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
(2...(𝑁 + 1)) → 2 ≤
1) |
| 111 | 109, 110 | mto 188 |
. . . . . . . . . . . . 13
⊢ ¬ 1
∈ (2...(𝑁 +
1)) |
| 112 | | disjsn 4246 |
. . . . . . . . . . . . 13
⊢
(((2...(𝑁 + 1))
∩ {1}) = ∅ ↔ ¬ 1 ∈ (2...(𝑁 + 1))) |
| 113 | 111, 112 | mpbir 221 |
. . . . . . . . . . . 12
⊢
((2...(𝑁 + 1)) ∩
{1}) = ∅ |
| 114 | 104, 113 | eqtri 2644 |
. . . . . . . . . . 11
⊢ ({1}
∩ (2...(𝑁 + 1))) =
∅ |
| 115 | | uneqdifeq 4057 |
. . . . . . . . . . 11
⊢ (({1}
⊆ (1...(𝑁 + 1)) ∧
({1} ∩ (2...(𝑁 + 1))) =
∅) → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1)))) |
| 116 | 103, 114,
115 | sylancl 694 |
. . . . . . . . . 10
⊢ (𝜑 → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) =
(2...(𝑁 +
1)))) |
| 117 | 102, 116 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
| 118 | 117 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
| 119 | | reseq2 5391 |
. . . . . . . . . 10
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → ((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
| 120 | | f1oeq1 6127 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
| 122 | | f1oeq2 6128 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
| 123 | | f1oeq3 6129 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 124 | 121, 122,
123 | 3bitrd 294 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 125 | 118, 124 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 126 | 93, 125 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 127 | 75 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 128 | | fzp1ss 12392 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → ((1 + 1)...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) |
| 129 | 96, 128 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((1 +
1)...(𝑁 + 1)) ⊆
(1...(𝑁 +
1)) |
| 130 | 100, 129 | eqsstr3i 3636 |
. . . . . . . . . 10
⊢
(2...(𝑁 + 1))
⊆ (1...(𝑁 +
1)) |
| 131 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (2...(𝑁 + 1))) |
| 132 | 130, 131 | sseldi 3601 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 133 | | fvco3 6275 |
. . . . . . . . 9
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
| 134 | 127, 132,
133 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
| 135 | 20, 21, 1, 22, 23, 24, 25, 6, 26 | subfacp1lem4 31165 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹 = 𝐹) |
| 136 | 135 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 137 | 136 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 138 | 78 | simprd 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ 1) |
| 139 | 138, 82 | neeqtrrd 2868 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
| 140 | 139 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
| 141 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) |
| 142 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → (𝐹‘𝑦) = (𝐹‘𝑀)) |
| 143 | 141, 142 | neeq12d 2855 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑏‘𝑀) ≠ (𝐹‘𝑀))) |
| 144 | 140, 143 | syl5ibrcom 237 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
| 145 | 130 | sseli 3599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 146 | 48 | simprd 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) |
| 147 | 146 | r19.21bi 2932 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
| 148 | 145, 147 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
| 149 | 148 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ 𝑦) |
| 150 | 25 | eleq2i 2693 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀})) |
| 151 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
| 152 | 150, 151 | bitri 264 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
| 153 | 20, 21, 1, 22, 23, 24, 25, 26, 28 | subfacp1lem2b 31163 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (( I ↾ 𝐾)‘𝑦)) |
| 154 | | fvresi 6439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
| 155 | 154 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
| 156 | 153, 155 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = 𝑦) |
| 157 | 152, 156 | sylan2br 493 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 158 | 157 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 159 | 149, 158 | neeqtrrd 2868 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
| 160 | 159 | expr 643 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
| 161 | 144, 160 | pm2.61dne 2880 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
| 162 | 161 | necomd 2849 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
| 163 | 137, 162 | eqnetrd 2861 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
| 164 | 31 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 165 | | ffvelrn 6357 |
. . . . . . . . . . . 12
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
| 166 | 75, 145, 165 | syl2an 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
| 167 | | f1ocnvfv 6534 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
| 168 | 164, 166,
167 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
| 169 | 168 | necon3d 2815 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (𝑏‘𝑦) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦)) |
| 170 | 163, 169 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦) |
| 171 | 134, 170 | eqnetrd 2861 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
| 172 | 171 | ralrimiva 2966 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
| 173 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (( I
↾ 𝐾):𝐾–1-1-onto→𝐾 → ( I ↾ 𝐾):𝐾⟶𝐾) |
| 174 | 27, 173 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
↾ 𝐾):𝐾⟶𝐾 |
| 175 | | difexg 4808 |
. . . . . . . . . . . . . 14
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
V) |
| 176 | 14, 175 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
V |
| 177 | 25, 176 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈ V |
| 178 | | fex 6490 |
. . . . . . . . . . . 12
⊢ ((( I
↾ 𝐾):𝐾⟶𝐾 ∧ 𝐾 ∈ V) → ( I ↾ 𝐾) ∈ V) |
| 179 | 174, 177,
178 | mp2an 708 |
. . . . . . . . . . 11
⊢ ( I
↾ 𝐾) ∈
V |
| 180 | | prex 4909 |
. . . . . . . . . . 11
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V |
| 181 | 179, 180 | unex 6956 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐾) ∪ {〈1,
𝑀〉, 〈𝑀, 1〉}) ∈
V |
| 182 | 26, 181 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝐹 ∈ V |
| 183 | 182, 41 | coex 7118 |
. . . . . . . 8
⊢ (𝐹 ∘ 𝑏) ∈ V |
| 184 | 183 | resex 5443 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ V |
| 185 | | f1oeq1 6127 |
. . . . . . . 8
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 186 | | fveq1 6190 |
. . . . . . . . . . 11
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
| 187 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 188 | 186, 187 | sylan9eq 2676 |
. . . . . . . . . 10
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑓‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 189 | 188 | neeq1d 2853 |
. . . . . . . . 9
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 190 | 189 | ralbidva 2985 |
. . . . . . . 8
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 191 | 185, 190 | anbi12d 747 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦))) |
| 192 | 184, 191,
13 | elab2 3354 |
. . . . . 6
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶 ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 193 | 126, 172,
192 | sylanbrc 698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶) |
| 194 | 193 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ 𝐵 → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶)) |
| 195 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 196 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) |
| 197 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
| 198 | | f1oeq1 6127 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 199 | | fveq1 6190 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) |
| 200 | 199 | neeq1d 2853 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) |
| 201 | 200 | ralbidv 2986 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 202 | 198, 201 | anbi12d 747 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦))) |
| 203 | 197, 202,
13 | elab2 3354 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 204 | 196, 203 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 205 | 204 | simpld 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 206 | | f1oun 6156 |
. . . . . . . . . . 11
⊢
((({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) ∧ (({1} ∩ (2...(𝑁 + 1))) = ∅ ∧ ({1}
∩ (2...(𝑁 + 1))) =
∅)) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 207 | 114, 114,
206 | mpanr12 721 |
. . . . . . . . . 10
⊢
(({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) → ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 208 | 64, 205, 207 | sylancr 695 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 209 | | f1oeq2 6128 |
. . . . . . . . . . . 12
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 +
1))))) |
| 210 | | f1oeq3 6129 |
. . . . . . . . . . . 12
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 211 | 209, 210 | bitrd 268 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 212 | 102, 211 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 213 | 212 | biimpa 501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))))
→ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 214 | 208, 213 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 215 | | f1oco 6159 |
. . . . . . . 8
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 216 | 195, 214,
215 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 217 | | f1of 6137 |
. . . . . . . . . . 11
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 218 | 214, 217 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 219 | | fvco3 6275 |
. . . . . . . . . 10
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 220 | 218, 219 | sylan 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 221 | 136 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 222 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 223 | 102 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 224 | 222, 223 | eleqtrrd 2704 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))) |
| 225 | | elun 3753 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ({1} ∪ (2...(𝑁 + 1))) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 226 | 224, 225 | sylib 208 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 227 | | nelne2 2891 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → 𝑀 ≠ 1) |
| 228 | 23, 111, 227 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ≠ 1) |
| 229 | 228 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) |
| 230 | 29 | simp2d 1074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘1) = 𝑀) |
| 231 | 230 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) = 𝑀) |
| 232 | | f1ofun 6139 |
. . . . . . . . . . . . . . . . . . 19
⊢
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) →
Fun ({〈1, 1〉} ∪ 𝑐)) |
| 233 | 208, 232 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → Fun ({〈1, 1〉} ∪ 𝑐)) |
| 234 | | ssun1 3776 |
. . . . . . . . . . . . . . . . . . 19
⊢ {〈1,
1〉} ⊆ ({〈1, 1〉} ∪ 𝑐) |
| 235 | 63 | snid 4208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
{1} |
| 236 | 63 | dmsnop 5609 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
{〈1, 1〉} = {1} |
| 237 | 235, 236 | eleqtrri 2700 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
dom {〈1, 1〉} |
| 238 | | funssfv 6209 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ {〈1, 1〉} ⊆ ({〈1,
1〉} ∪ 𝑐) ∧ 1
∈ dom {〈1, 1〉}) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 239 | 234, 237,
238 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
({〈1, 1〉} ∪ 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 240 | 233, 239 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 241 | 63, 63 | fvsn 6446 |
. . . . . . . . . . . . . . . . 17
⊢
({〈1, 1〉}‘1) = 1 |
| 242 | 240, 241 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
| 243 | 229, 231,
242 | 3netr4d 2871 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1)) |
| 244 | | elsni 4194 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
| 245 | 244 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → (𝐹‘𝑦) = (𝐹‘1)) |
| 246 | 244 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → (({〈1,
1〉} ∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 247 | 245, 246 | neeq12d 2855 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → ((𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1))) |
| 248 | 243, 247 | syl5ibrcom 237 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ {1} → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 249 | 248 | imp 445 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ {1}) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 250 | 233 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → Fun ({〈1, 1〉} ∪
𝑐)) |
| 251 | | ssun2 3777 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑐 ⊆ ({〈1, 1〉}
∪ 𝑐) |
| 252 | 251 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
| 253 | | f1odm 6141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → dom 𝑐 = (2...(𝑁 + 1))) |
| 254 | 205, 253 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → dom 𝑐 = (2...(𝑁 + 1))) |
| 255 | 254 | eleq2d 2687 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 256 | 255 | biimpar 502 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ dom 𝑐) |
| 257 | | funssfv 6209 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑦 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 258 | 250, 252,
256, 257 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 259 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
| 260 | 205, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
| 261 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) |
| 262 | 260, 261 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (2...(𝑁 + 1))) |
| 263 | | nelne2 2891 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐‘𝑀) ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
| 264 | 262, 111,
263 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 1) |
| 265 | 264 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
| 266 | 81 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑀) = 1) |
| 267 | 265, 266 | neeqtrrd 2868 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ (𝐹‘𝑀)) |
| 268 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑀 → (𝑐‘𝑦) = (𝑐‘𝑀)) |
| 269 | 268, 142 | neeq12d 2855 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑐‘𝑀) ≠ (𝐹‘𝑀))) |
| 270 | 267, 269 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
| 271 | 204 | simprd 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦) |
| 272 | 271 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ 𝑦) |
| 273 | 272 | adantrr 753 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ 𝑦) |
| 274 | 157 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 275 | 273, 274 | neeqtrrd 2868 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
| 276 | 275 | expr 643 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
| 277 | 270, 276 | pm2.61dne 2880 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
| 278 | 258, 277 | eqnetrd 2861 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ≠ (𝐹‘𝑦)) |
| 279 | 278 | necomd 2849 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 280 | 249, 279 | jaodan 826 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 281 | 226, 280 | syldan 487 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 282 | 221, 281 | eqnetrd 2861 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 283 | 195 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 284 | 218 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) |
| 285 | | f1ocnvfv 6534 |
. . . . . . . . . . . 12
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 286 | 283, 284,
285 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 287 | 286 | necon3d 2815 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦)) |
| 288 | 282, 287 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦) |
| 289 | 220, 288 | eqnetrd 2861 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
| 290 | 289 | ralrimiva 2966 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
| 291 | | snex 4908 |
. . . . . . . . . 10
⊢ {〈1,
1〉} ∈ V |
| 292 | 291, 197 | unex 6956 |
. . . . . . . . 9
⊢
({〈1, 1〉} ∪ 𝑐) ∈ V |
| 293 | 182, 292 | coex 7118 |
. . . . . . . 8
⊢ (𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈
V |
| 294 | | f1oeq1 6127 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 295 | | fveq1 6190 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓‘𝑦) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦)) |
| 296 | 295 | neeq1d 2853 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 297 | 296 | ralbidv 2986 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 298 | 294, 297 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦))) |
| 299 | 293, 298,
1 | elab2 3354 |
. . . . . . 7
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐴 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 300 | 216, 290,
299 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴) |
| 301 | 70 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ∈ (1...(𝑁 + 1))) |
| 302 | | fvco3 6275 |
. . . . . . . . 9
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉}
∪ 𝑐)‘1))) |
| 303 | 218, 301,
302 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1))) |
| 304 | 242 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1)) = (𝐹‘1)) |
| 305 | 303, 304,
231 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀) |
| 306 | 130, 23 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 + 1))) |
| 307 | 306 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (1...(𝑁 + 1))) |
| 308 | | fvco3 6275 |
. . . . . . . . . 10
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑀 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
| 309 | 218, 307,
308 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
| 310 | 251 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
| 311 | 261, 254 | eleqtrrd 2704 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ dom 𝑐) |
| 312 | | funssfv 6209 |
. . . . . . . . . . 11
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑀 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
| 313 | 233, 310,
311, 312 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
| 314 | 313 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀)) = (𝐹‘(𝑐‘𝑀))) |
| 315 | 309, 314 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(𝑐‘𝑀))) |
| 316 | 135 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹‘1) = (𝐹‘1)) |
| 317 | 316, 230 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘1) = 𝑀) |
| 318 | 317 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) = 𝑀) |
| 319 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) |
| 320 | 268, 319 | neeq12d 2855 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑀) ≠ 𝑀)) |
| 321 | 320 | rspcv 3305 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (2...(𝑁 + 1)) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦 → (𝑐‘𝑀) ≠ 𝑀)) |
| 322 | 261, 271,
321 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 𝑀) |
| 323 | 322 | necomd 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ (𝑐‘𝑀)) |
| 324 | 318, 323 | eqnetrd 2861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) ≠ (𝑐‘𝑀)) |
| 325 | 130, 262 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) |
| 326 | | f1ocnvfv 6534 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
| 327 | 195, 325,
326 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
| 328 | 327 | necon3d 2815 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((◡𝐹‘1) ≠ (𝑐‘𝑀) → (𝐹‘(𝑐‘𝑀)) ≠ 1)) |
| 329 | 324, 328 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(𝑐‘𝑀)) ≠ 1) |
| 330 | 315, 329 | eqnetrd 2861 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1) |
| 331 | 305, 330 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
| 332 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘1) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1)) |
| 333 | 332 | eqeq1d 2624 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘1) = 𝑀 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀)) |
| 334 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘𝑀) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀)) |
| 335 | 334 | neeq1d 2853 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘𝑀) ≠ 1 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
| 336 | 333, 335 | anbi12d 747 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
| 337 | 336, 6 | elrab2 3366 |
. . . . . 6
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐵 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴 ∧ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
| 338 | 300, 331,
337 | sylanbrc 698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵) |
| 339 | 338 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ 𝐶 → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵)) |
| 340 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 341 | | f1of1 6136 |
. . . . . . . 8
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 342 | 340, 341 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 343 | | f1of 6137 |
. . . . . . . . 9
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 344 | 340, 343 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 345 | 75 | adantrr 753 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 346 | | fco 6058 |
. . . . . . . 8
⊢ ((𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 347 | 344, 345,
346 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 348 | 218 | adantrl 752 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 349 | | cocan1 6546 |
. . . . . . 7
⊢ ((𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ∧ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
| 350 | 342, 347,
348, 349 | syl3anc 1326 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
| 351 | | coass 5654 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝐹) ∘ 𝑏) = (𝐹 ∘ (𝐹 ∘ 𝑏)) |
| 352 | 135 | coeq1d 5283 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = (𝐹 ∘ 𝐹)) |
| 353 | | f1ococnv1 6165 |
. . . . . . . . . . . . 13
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 354 | 30, 353 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 355 | 352, 354 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 356 | 355 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 357 | 356 | coeq1d 5283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏)) |
| 358 | | fcoi2 6079 |
. . . . . . . . . 10
⊢ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
| 359 | 345, 358 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
| 360 | 357, 359 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = 𝑏) |
| 361 | 351, 360 | syl5eqr 2670 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ (𝐹 ∘ 𝑏)) = 𝑏) |
| 362 | 361 | eqeq1d 2624 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)))) |
| 363 | 83 | adantrr 753 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = 1) |
| 364 | 242 | adantrl 752 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
| 365 | 363, 364 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 366 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 1 → ((𝐹 ∘ 𝑏)‘𝑦) = ((𝐹 ∘ 𝑏)‘1)) |
| 367 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 1 → (({〈1, 1〉}
∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪
𝑐)‘1)) |
| 368 | 366, 367 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1))) |
| 369 | 63, 368 | ralsn 4222 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
{1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 370 | 365, 369 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 371 | 370 | biantrurd 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)))) |
| 372 | | ralunb 3794 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
({1} ∪ (2...(𝑁 +
1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 373 | 371, 372 | syl6bbr 278 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 374 | 187 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 375 | 374 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
| 376 | 258 | adantlrl 756 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 377 | 375, 376 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 378 | 377 | ralbidva 2985 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 379 | 102 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 380 | 379 | raleqdv 3144 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 381 | 373, 378,
380 | 3bitr3rd 299 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 382 | 65 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 383 | 214 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 384 | | f1ofn 6138 |
. . . . . . . . . 10
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐) Fn (1...(𝑁 + 1))) |
| 385 | 383, 384 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) |
| 386 | | eqfnfv 6311 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 387 | 382, 385,
386 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 388 | | fnssres 6004 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ (2...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
| 389 | 382, 130,
388 | sylancl 694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
| 390 | 205 | adantrl 752 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 391 | | f1ofn 6138 |
. . . . . . . . . 10
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐 Fn (2...(𝑁 + 1))) |
| 392 | 390, 391 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn (2...(𝑁 + 1))) |
| 393 | | eqfnfv 6311 |
. . . . . . . . 9
⊢ ((((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1)) ∧ 𝑐 Fn (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 394 | 389, 392,
393 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 395 | 381, 387,
394 | 3bitr4d 300 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐)) |
| 396 | | eqcom 2629 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
| 397 | 395, 396 | syl6bb 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
| 398 | 350, 362,
397 | 3bitr3d 298 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
| 399 | 398 | ex 450 |
. . . 4
⊢ (𝜑 → ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))))) |
| 400 | 12, 19, 194, 339, 399 | en3d 7992 |
. . 3
⊢ (𝜑 → 𝐵 ≈ 𝐶) |
| 401 | | hashen 13135 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝐶 ∈ Fin) →
((#‘𝐵) =
(#‘𝐶) ↔ 𝐵 ≈ 𝐶)) |
| 402 | 10, 17, 401 | mp2an 708 |
. . 3
⊢
((#‘𝐵) =
(#‘𝐶) ↔ 𝐵 ≈ 𝐶) |
| 403 | 400, 402 | sylibr 224 |
. 2
⊢ (𝜑 → (#‘𝐵) = (#‘𝐶)) |
| 404 | 20, 21 | derangen2 31156 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (𝑆‘(#‘(2...(𝑁 + 1))))) |
| 405 | 20 | derangval 31149 |
. . . . . 6
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (#‘{𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)})) |
| 406 | 13 | fveq2i 6194 |
. . . . . 6
⊢
(#‘𝐶) =
(#‘{𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)}) |
| 407 | 405, 406 | syl6eqr 2674 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (#‘𝐶)) |
| 408 | 404, 407 | eqtr3d 2658 |
. . . 4
⊢
((2...(𝑁 + 1))
∈ Fin → (𝑆‘(#‘(2...(𝑁 + 1)))) = (#‘𝐶)) |
| 409 | 14, 408 | ax-mp 5 |
. . 3
⊢ (𝑆‘(#‘(2...(𝑁 + 1)))) = (#‘𝐶) |
| 410 | 22, 67 | syl6eleq 2711 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 411 | | eluzp1p1 11713 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 412 | 410, 411 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 413 | | df-2 11079 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
| 414 | 413 | fveq2i 6194 |
. . . . . . 7
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 415 | 412, 414 | syl6eleqr 2712 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘2)) |
| 416 | | hashfz 13214 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘2) → (#‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
| 417 | 415, 416 | syl 17 |
. . . . 5
⊢ (𝜑 → (#‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
| 418 | 66 | nncnd 11036 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
| 419 | | 2cnd 11093 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
| 420 | | 1cnd 10056 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
| 421 | 418, 419,
420 | subsubd 10420 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = (((𝑁 + 1) − 2) +
1)) |
| 422 | | 2m1e1 11135 |
. . . . . . 7
⊢ (2
− 1) = 1 |
| 423 | 422 | oveq2i 6661 |
. . . . . 6
⊢ ((𝑁 + 1) − (2 − 1)) =
((𝑁 + 1) −
1) |
| 424 | 22 | nncnd 11036 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 425 | | ax-1cn 9994 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 426 | | pncan 10287 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 427 | 424, 425,
426 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 428 | 423, 427 | syl5eq 2668 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = 𝑁) |
| 429 | 417, 421,
428 | 3eqtr2d 2662 |
. . . 4
⊢ (𝜑 → (#‘(2...(𝑁 + 1))) = 𝑁) |
| 430 | 429 | fveq2d 6195 |
. . 3
⊢ (𝜑 → (𝑆‘(#‘(2...(𝑁 + 1)))) = (𝑆‘𝑁)) |
| 431 | 409, 430 | syl5eqr 2670 |
. 2
⊢ (𝜑 → (#‘𝐶) = (𝑆‘𝑁)) |
| 432 | 403, 431 | eqtrd 2656 |
1
⊢ (𝜑 → (#‘𝐵) = (𝑆‘𝑁)) |