![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzneg | Structured version Visualization version GIF version |
Description: Reflection of a finite range of integers about 0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
fzneg | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 | . . 3 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴)) | |
2 | zre 11381 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 2 | 3ad2ant1 1082 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℝ) |
4 | zre 11381 | . . . . . 6 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
5 | 4 | 3ad2ant3 1084 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℝ) |
6 | 3, 5 | lenegd 10606 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
7 | zre 11381 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1083 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℝ) |
9 | 8, 3 | lenegd 10606 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ -𝐴 ≤ -𝐵)) |
10 | 6, 9 | anbi12d 747 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐴) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
11 | 1, 10 | syl5bb 272 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
12 | elfz 12332 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
13 | znegcl 11412 | . . . 4 ⊢ (𝐴 ∈ ℤ → -𝐴 ∈ ℤ) | |
14 | znegcl 11412 | . . . 4 ⊢ (𝐶 ∈ ℤ → -𝐶 ∈ ℤ) | |
15 | znegcl 11412 | . . . 4 ⊢ (𝐵 ∈ ℤ → -𝐵 ∈ ℤ) | |
16 | elfz 12332 | . . . 4 ⊢ ((-𝐴 ∈ ℤ ∧ -𝐶 ∈ ℤ ∧ -𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) | |
17 | 13, 14, 15, 16 | syl3an 1368 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
18 | 17 | 3com23 1271 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (-𝐴 ∈ (-𝐶...-𝐵) ↔ (-𝐶 ≤ -𝐴 ∧ -𝐴 ≤ -𝐵))) |
19 | 11, 12, 18 | 3bitr4d 300 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐵...𝐶) ↔ -𝐴 ∈ (-𝐶...-𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 class class class wbr 4653 (class class class)co 6650 ℝcr 9935 ≤ cle 10075 -cneg 10267 ℤcz 11377 ...cfz 12326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-z 11378 df-fz 12327 |
This theorem is referenced by: acongeq 37550 |
Copyright terms: Public domain | W3C validator |