MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacos Structured version   Visualization version   GIF version

Theorem gastacos 17743
Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
gastacos ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝐵   𝑢,𝑋   𝑢,𝐶
Allowed substitution hints:   (𝑢)   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacos
StepHypRef Expression
1 gasta.1 . . . . . . 7 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . . . 7 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
31, 2gastacl 17742 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
43adantr 481 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 17599 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐺 ∈ Grp)
71subgss 17595 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
84, 7syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻𝑋)
9 eqid 2622 . . . . 5 (invg𝐺) = (invg𝐺)
10 eqid 2622 . . . . 5 (+g𝐺) = (+g𝐺)
11 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
121, 9, 10, 11eqgval 17643 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻𝑋) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
136, 8, 12syl2anc 693 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
14 df-3an 1039 . . 3 ((𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻) ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻))
1513, 14syl6bb 276 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
16 simpr 477 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑋𝐶𝑋))
1716biantrurd 529 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
18 simpll 790 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ∈ (𝐺 GrpAct 𝑌))
19 simprl 794 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
201, 9grpinvcl 17467 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
216, 19, 20syl2anc 693 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
22 simprr 796 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
23 simplr 792 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐴𝑌)
241, 10gaass 17730 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋𝐴𝑌)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2518, 21, 22, 23, 24syl13anc 1328 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2625eqeq1d 2624 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
271, 10grpcl 17430 . . . . 5 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
286, 21, 22, 27syl3anc 1326 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
29 oveq1 6657 . . . . . . 7 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → (𝑢 𝐴) = ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴))
3029eqeq1d 2624 . . . . . 6 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → ((𝑢 𝐴) = 𝐴 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3130, 2elrab2 3366 . . . . 5 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 ∧ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3231baib 944 . . . 4 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3328, 32syl 17 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
341gaf 17728 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3518, 34syl 17 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → :(𝑋 × 𝑌)⟶𝑌)
3635, 22, 23fovrnd 6806 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐶 𝐴) ∈ 𝑌)
371, 9gacan 17738 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐵𝑋𝐴𝑌 ∧ (𝐶 𝐴) ∈ 𝑌)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3818, 19, 23, 36, 37syl13anc 1328 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3926, 33, 383bitr4d 300 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
4015, 17, 393bitr2d 296 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Grpcgrp 17422  invgcminusg 17423  SubGrpcsubg 17588   ~QG cqg 17590   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-eqg 17593  df-ga 17723
This theorem is referenced by:  orbstafun  17744  orbsta  17746
  Copyright terms: Public domain W3C validator