HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hisubcomi Structured version   Visualization version   GIF version

Theorem hisubcomi 27961
Description: Two vector subtractions simultaneously commute in an inner product. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
hisubcom.1 𝐴 ∈ ℋ
hisubcom.2 𝐵 ∈ ℋ
hisubcom.3 𝐶 ∈ ℋ
hisubcom.4 𝐷 ∈ ℋ
Assertion
Ref Expression
hisubcomi ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))

Proof of Theorem hisubcomi
StepHypRef Expression
1 hisubcom.2 . . . 4 𝐵 ∈ ℋ
2 hisubcom.1 . . . 4 𝐴 ∈ ℋ
31, 2hvnegdii 27919 . . 3 (-1 · (𝐵 𝐴)) = (𝐴 𝐵)
4 hisubcom.4 . . . 4 𝐷 ∈ ℋ
5 hisubcom.3 . . . 4 𝐶 ∈ ℋ
64, 5hvnegdii 27919 . . 3 (-1 · (𝐷 𝐶)) = (𝐶 𝐷)
73, 6oveq12i 6662 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐴 𝐵) ·ih (𝐶 𝐷))
8 neg1cn 11124 . . . 4 -1 ∈ ℂ
91, 2hvsubcli 27878 . . . 4 (𝐵 𝐴) ∈ ℋ
104, 5hvsubcli 27878 . . . 4 (𝐷 𝐶) ∈ ℋ
118, 8, 9, 10his35i 27946 . . 3 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
12 neg1rr 11125 . . . . . . 7 -1 ∈ ℝ
13 cjre 13879 . . . . . . 7 (-1 ∈ ℝ → (∗‘-1) = -1)
1412, 13ax-mp 5 . . . . . 6 (∗‘-1) = -1
1514oveq2i 6661 . . . . 5 (-1 · (∗‘-1)) = (-1 · -1)
16 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
1716, 16mul2negi 10478 . . . . 5 (-1 · -1) = (1 · 1)
18 1t1e1 11175 . . . . 5 (1 · 1) = 1
1915, 17, 183eqtri 2648 . . . 4 (-1 · (∗‘-1)) = 1
2019oveq1i 6660 . . 3 ((-1 · (∗‘-1)) · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶)))
219, 10hicli 27938 . . . 4 ((𝐵 𝐴) ·ih (𝐷 𝐶)) ∈ ℂ
2221mulid2i 10043 . . 3 (1 · ((𝐵 𝐴) ·ih (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
2311, 20, 223eqtri 2648 . 2 ((-1 · (𝐵 𝐴)) ·ih (-1 · (𝐷 𝐶))) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
247, 23eqtr3i 2646 1 ((𝐴 𝐵) ·ih (𝐶 𝐷)) = ((𝐵 𝐴) ·ih (𝐷 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   · cmul 9941  -cneg 10267  ccj 13836  chil 27776   · csm 27778   ·ih csp 27779   cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hvcom 27858  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hfi 27936  ax-his1 27939  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828
This theorem is referenced by:  lnophmlem2  28876
  Copyright terms: Public domain W3C validator