![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iblmbf | Structured version Visualization version GIF version |
Description: An integrable function is measurable. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iblmbf | ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ibl 23391 | . . 3 ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | |
2 | ssrab2 3687 | . . 3 ⊢ {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} ⊆ MblFn | |
3 | 1, 2 | eqsstri 3635 | . 2 ⊢ 𝐿1 ⊆ MblFn |
4 | 3 | sseli 3599 | 1 ⊢ (𝐹 ∈ 𝐿1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⦋csb 3533 ifcif 4086 class class class wbr 4653 ↦ cmpt 4729 dom cdm 5114 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 ici 9938 ≤ cle 10075 / cdiv 10684 3c3 11071 ...cfz 12326 ↑cexp 12860 ℜcre 13837 MblFncmbf 23383 ∫2citg2 23385 𝐿1cibl 23386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-in 3581 df-ss 3588 df-ibl 23391 |
This theorem is referenced by: iblcnlem 23555 itgcnlem 23556 itgcnval 23566 itgre 23567 itgim 23568 iblneg 23569 itgneg 23570 iblss 23571 iblss2 23572 itgge0 23577 itgss3 23581 itgless 23583 iblsub 23588 itgadd 23591 itgsub 23592 itgfsum 23593 iblabs 23595 iblmulc2 23597 itgmulc2 23600 itgabs 23601 itgsplit 23602 bddmulibl 23605 itggt0 23608 itgcn 23609 ditgswap 23623 ditgsplitlem 23624 ftc1a 23800 itgsubstlem 23811 iblulm 24161 itgulm 24162 ibladdnc 33467 itgaddnclem1 33468 itgaddnclem2 33469 itgaddnc 33470 iblsubnc 33471 itgsubnc 33472 iblabsnclem 33473 iblabsnc 33474 iblmulc2nc 33475 itgmulc2nclem2 33477 itgmulc2nc 33478 itgabsnc 33479 ftc1cnnclem 33483 ftc1anclem2 33486 ftc1anclem4 33488 ftc1anclem5 33489 ftc1anclem6 33490 ftc1anclem8 33492 |
Copyright terms: Public domain | W3C validator |