MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgneg Structured version   Visualization version   GIF version

Theorem itgneg 23570
Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgcnval.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcnval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgneg (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgneg
StepHypRef Expression
1 itgcnval.2 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 23534 . . . . . . . 8 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 itgcnval.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23404 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
65recld 13934 . . . . 5 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
75iblcn 23565 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
81, 7mpbid 222 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
98simpld 475 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
106, 9itgcl 23550 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
11 ax-icn 9995 . . . . 5 i ∈ ℂ
125imcld 13935 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
138simprd 479 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
1412, 13itgcl 23550 . . . . 5 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
15 mulcl 10020 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1611, 14, 15sylancr 695 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
1710, 16negdid 10405 . . 3 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)))
18 0re 10040 . . . . . . . 8 0 ∈ ℝ
19 ifcl 4130 . . . . . . . 8 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
206, 18, 19sylancl 694 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) ∈ ℝ)
216iblre 23560 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)))
229, 21mpbid 222 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1))
2322simpld 475 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0)) ∈ 𝐿1)
2420, 23itgcl 23550 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
256renegcld 10457 . . . . . . . 8 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
26 ifcl 4130 . . . . . . . 8 ((-(ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2725, 18, 26sylancl 694 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) ∈ ℝ)
2822simprd 479 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0)) ∈ 𝐿1)
2927, 28itgcl 23550 . . . . . 6 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 ∈ ℂ)
3024, 29negsubdi2d 10408 . . . . 5 (𝜑 → -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
316, 9itgreval 23563 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
3231negeqd 10275 . . . . 5 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥))
335negcld 10379 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
3433recld 13934 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) ∈ ℝ)
354, 1iblneg 23569 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ 𝐿1)
3633iblcn 23565 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ -𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)))
3735, 36mpbid 222 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1))
3837simpld 475 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℜ‘-𝐵)) ∈ 𝐿1)
3934, 38itgreval 23563 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥))
405renegd 13949 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
4140breq2d 4665 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ (ℜ‘-𝐵) ↔ 0 ≤ -(ℜ‘𝐵)))
4241, 40ifbieq1d 4109 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) = if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0))
4342itgeq2dv 23548 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥)
4440negeqd 10275 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = --(ℜ‘𝐵))
456recnd 10068 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4645negnegd 10383 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → --(ℜ‘𝐵) = (ℜ‘𝐵))
4744, 46eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑥𝐴) → -(ℜ‘-𝐵) = (ℜ‘𝐵))
4847breq2d 4665 . . . . . . . . 9 ((𝜑𝑥𝐴) → (0 ≤ -(ℜ‘-𝐵) ↔ 0 ≤ (ℜ‘𝐵)))
4948, 47ifbieq1d 4109 . . . . . . . 8 ((𝜑𝑥𝐴) → if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) = if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0))
5049itgeq2dv 23548 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥)
5143, 50oveq12d 6668 . . . . . 6 (𝜑 → (∫𝐴if(0 ≤ (ℜ‘-𝐵), (ℜ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℜ‘-𝐵), -(ℜ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5239, 51eqtrd 2656 . . . . 5 (𝜑 → ∫𝐴(ℜ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ -(ℜ‘𝐵), -(ℜ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℜ‘𝐵), (ℜ‘𝐵), 0) d𝑥))
5330, 32, 523eqtr4d 2666 . . . 4 (𝜑 → -∫𝐴(ℜ‘𝐵) d𝑥 = ∫𝐴(ℜ‘-𝐵) d𝑥)
54 mulneg2 10467 . . . . . 6 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
5511, 14, 54sylancr 695 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = -(i · ∫𝐴(ℑ‘𝐵) d𝑥))
56 ifcl 4130 . . . . . . . . . . 11 (((ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5712, 18, 56sylancl 694 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) ∈ ℝ)
5812iblre 23560 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)))
5913, 58mpbid 222 . . . . . . . . . . 11 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1))
6059simpld 475 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0)) ∈ 𝐿1)
6157, 60itgcl 23550 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6212renegcld 10457 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
63 ifcl 4130 . . . . . . . . . . 11 ((-(ℑ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6462, 18, 63sylancl 694 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) ∈ ℝ)
6559simprd 479 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0)) ∈ 𝐿1)
6664, 65itgcl 23550 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 ∈ ℂ)
6761, 66negsubdi2d 10408 . . . . . . . 8 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
685imnegd 13950 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
6968breq2d 4665 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ (ℑ‘-𝐵) ↔ 0 ≤ -(ℑ‘𝐵)))
7069, 68ifbieq1d 4109 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) = if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0))
7170itgeq2dv 23548 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥)
7268negeqd 10275 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = --(ℑ‘𝐵))
7312recnd 10068 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
7473negnegd 10383 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → --(ℑ‘𝐵) = (ℑ‘𝐵))
7572, 74eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -(ℑ‘-𝐵) = (ℑ‘𝐵))
7675breq2d 4665 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (0 ≤ -(ℑ‘-𝐵) ↔ 0 ≤ (ℑ‘𝐵)))
7776, 75ifbieq1d 4109 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) = if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0))
7877itgeq2dv 23548 . . . . . . . . 9 (𝜑 → ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥 = ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥)
7971, 78oveq12d 6668 . . . . . . . 8 (𝜑 → (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥))
8067, 79eqtr4d 2659 . . . . . . 7 (𝜑 → -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥) = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8112, 13itgreval 23563 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8281negeqd 10275 . . . . . . 7 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = -(∫𝐴if(0 ≤ (ℑ‘𝐵), (ℑ‘𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘𝐵), -(ℑ‘𝐵), 0) d𝑥))
8333imcld 13935 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) ∈ ℝ)
8437simprd 479 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘-𝐵)) ∈ 𝐿1)
8583, 84itgreval 23563 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘-𝐵) d𝑥 = (∫𝐴if(0 ≤ (ℑ‘-𝐵), (ℑ‘-𝐵), 0) d𝑥 − ∫𝐴if(0 ≤ -(ℑ‘-𝐵), -(ℑ‘-𝐵), 0) d𝑥))
8680, 82, 853eqtr4d 2666 . . . . . 6 (𝜑 → -∫𝐴(ℑ‘𝐵) d𝑥 = ∫𝐴(ℑ‘-𝐵) d𝑥)
8786oveq2d 6666 . . . . 5 (𝜑 → (i · -∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8855, 87eqtr3d 2658 . . . 4 (𝜑 → -(i · ∫𝐴(ℑ‘𝐵) d𝑥) = (i · ∫𝐴(ℑ‘-𝐵) d𝑥))
8953, 88oveq12d 6668 . . 3 (𝜑 → (-∫𝐴(ℜ‘𝐵) d𝑥 + -(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9017, 89eqtrd 2656 . 2 (𝜑 → -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
914, 1itgcnval 23566 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9291negeqd 10275 . 2 (𝜑 → -∫𝐴𝐵 d𝑥 = -(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
9333, 35itgcnval 23566 . 2 (𝜑 → ∫𝐴-𝐵 d𝑥 = (∫𝐴(ℜ‘-𝐵) d𝑥 + (i · ∫𝐴(ℑ‘-𝐵) d𝑥)))
9490, 92, 933eqtr4d 2666 1 (𝜑 → -∫𝐴𝐵 d𝑥 = ∫𝐴-𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  ici 9938   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267  cre 13837  cim 13838  MblFncmbf 23383  𝐿1cibl 23386  citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-xmet 19739  df-met 19740  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437
This theorem is referenced by:  itgsub  23592  itgsubnc  33472  itgmulc2nc  33478  sqwvfourb  40446
  Copyright terms: Public domain W3C validator