| Step | Hyp | Ref
| Expression |
| 1 | | iblitg.1 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
| 3 | | iblitg.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) |
| 4 | 3 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾)))) |
| 5 | | iexpcyc 12969 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℤ →
(i↑(𝐾 mod 4)) =
(i↑𝐾)) |
| 6 | 5 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾))) |
| 7 | 6 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ →
(ℜ‘(𝐵 /
(i↑(𝐾 mod 4)))) =
(ℜ‘(𝐵 /
(i↑𝐾)))) |
| 8 | 7 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾)))) |
| 9 | 4, 8 | eqtr4d 2659 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐾 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))) |
| 10 | 9 | ibllem 23531 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)) |
| 11 | 10 | mpteq2dv 4745 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) |
| 12 | 2, 11 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) |
| 13 | 12 | fveq2d 6195 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) →
(∫2‘𝐺)
= (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))) |
| 14 | | 4nn 11187 |
. . . . . 6
⊢ 4 ∈
ℕ |
| 15 | | zmodfz 12692 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 4 ∈
ℕ) → (𝐾 mod 4)
∈ (0...(4 − 1))) |
| 16 | 14, 15 | mpan2 707 |
. . . . 5
⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 −
1))) |
| 17 | | 4cn 11098 |
. . . . . . 7
⊢ 4 ∈
ℂ |
| 18 | | ax-1cn 9994 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 19 | | 3cn 11095 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 20 | 18, 19 | addcomi 10227 |
. . . . . . . 8
⊢ (1 + 3) =
(3 + 1) |
| 21 | | df-4 11081 |
. . . . . . . 8
⊢ 4 = (3 +
1) |
| 22 | 20, 21 | eqtr4i 2647 |
. . . . . . 7
⊢ (1 + 3) =
4 |
| 23 | 17, 18, 19, 22 | subaddrii 10370 |
. . . . . 6
⊢ (4
− 1) = 3 |
| 24 | 23 | oveq2i 6661 |
. . . . 5
⊢ (0...(4
− 1)) = (0...3) |
| 25 | 16, 24 | syl6eleq 2711 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) ∈
(0...3)) |
| 26 | 25 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3)) |
| 27 | | iblitg.3 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 28 | | eqidd 2623 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) |
| 29 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) |
| 30 | | iblitg.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 31 | 28, 29, 30 | isibl2 23533 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))) |
| 32 | 27, 31 | mpbid 222 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)) |
| 33 | 32 | simprd 479 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
| 34 | 33 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
| 35 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4))) |
| 36 | 35 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4)))) |
| 37 | 36 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))) |
| 38 | 37 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))) |
| 39 | 38 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑘 = (𝐾 mod 4) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))) |
| 40 | 39, 37 | ifbieq1d 4109 |
. . . . . . 7
⊢ (𝑘 = (𝐾 mod 4) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)) |
| 41 | 40 | mpteq2dv 4745 |
. . . . . 6
⊢ (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) |
| 42 | 41 | fveq2d 6195 |
. . . . 5
⊢ (𝑘 = (𝐾 mod 4) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘(𝐵 /
(i↑(𝐾 mod 4))))),
(ℜ‘(𝐵 /
(i↑(𝐾 mod 4)))),
0)))) |
| 43 | 42 | eleq1d 2686 |
. . . 4
⊢ (𝑘 = (𝐾 mod 4) →
((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈
ℝ)) |
| 44 | 43 | rspcv 3305 |
. . 3
⊢ ((𝐾 mod 4) ∈ (0...3) →
(∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈
ℝ)) |
| 45 | 26, 34, 44 | sylc 65 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈
ℝ) |
| 46 | 13, 45 | eqeltrd 2701 |
1
⊢ ((𝜑 ∧ 𝐾 ∈ ℤ) →
(∫2‘𝐺)
∈ ℝ) |