Proof of Theorem itgmulc2
| Step | Hyp | Ref
| Expression |
| 1 | | itgmulc2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 2 | 1 | recld 13934 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℝ) |
| 3 | 2 | recnd 10068 |
. . . . . . 7
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℂ) |
| 4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
| 5 | | itgmulc2.3 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 6 | | iblmbf 23534 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 8 | | itgmulc2.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 9 | 7, 8 | mbfmptcl 23404 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 10 | 9 | recld 13934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 11 | 10 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 12 | 4, 11 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
| 13 | 9 | iblcn 23565 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
| 14 | 5, 13 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
| 15 | 14 | simpld 475 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
| 16 | 3, 10, 15 | iblmulc2 23597 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈
𝐿1) |
| 17 | 12, 16 | itgcl 23550 |
. . . 4
⊢ (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) |
| 18 | | ax-icn 9995 |
. . . . 5
⊢ i ∈
ℂ |
| 19 | 9 | imcld 13935 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 20 | 19 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 21 | 4, 20 | mulcld 10060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 22 | 14 | simprd 479 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
| 23 | 3, 19, 22 | iblmulc2 23597 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈
𝐿1) |
| 24 | 21, 23 | itgcl 23550 |
. . . . 5
⊢ (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) |
| 25 | | mulcl 10020 |
. . . . 5
⊢ ((i
∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i ·
∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ) |
| 26 | 18, 24, 25 | sylancr 695 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ) |
| 27 | 1 | imcld 13935 |
. . . . . . . . 9
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℝ) |
| 28 | 27 | renegcld 10457 |
. . . . . . . 8
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℝ) |
| 29 | 28 | recnd 10068 |
. . . . . . 7
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℂ) |
| 30 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℂ) |
| 31 | 30, 20 | mulcld 10060 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 32 | 29, 19, 22 | iblmulc2 23597 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈
𝐿1) |
| 33 | 31, 32 | itgcl 23550 |
. . . 4
⊢ (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) |
| 34 | 27 | recnd 10068 |
. . . . . . . 8
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℂ) |
| 35 | 34 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
| 36 | 35, 11 | mulcld 10060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
| 37 | 34, 10, 15 | iblmulc2 23597 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈
𝐿1) |
| 38 | 36, 37 | itgcl 23550 |
. . . . 5
⊢ (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) |
| 39 | | mulcl 10020 |
. . . . 5
⊢ ((i
∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i ·
∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ) |
| 40 | 18, 38, 39 | sylancr 695 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ) |
| 41 | 17, 26, 33, 40 | add4d 10264 |
. . 3
⊢ (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 42 | | mulcl 10020 |
. . . . . 6
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐶) ∈ ℂ) → (i ·
(ℑ‘𝐶)) ∈
ℂ) |
| 43 | 18, 34, 42 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (i ·
(ℑ‘𝐶)) ∈
ℂ) |
| 44 | 8, 5 | itgcl 23550 |
. . . . 5
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| 45 | 3, 43, 44 | adddird 10065 |
. . . 4
⊢ (𝜑 → (((ℜ‘𝐶) + (i ·
(ℑ‘𝐶)))
· ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥))) |
| 46 | 8, 5 | itgcnval 23566 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
| 47 | 46 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 48 | 10, 15 | itgcl 23550 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ) |
| 49 | 19, 22 | itgcl 23550 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) |
| 50 | | mulcl 10020 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i ·
∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 51 | 18, 49, 50 | sylancr 695 |
. . . . . . 7
⊢ (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 52 | 3, 48, 51 | adddid 10064 |
. . . . . 6
⊢ (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 53 | 3, 10, 15, 2, 10 | itgmulc2lem2 23599 |
. . . . . . 7
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥) |
| 54 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → i ∈
ℂ) |
| 55 | 3, 54, 49 | mul12d 10245 |
. . . . . . . 8
⊢ (𝜑 → ((ℜ‘𝐶) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))) |
| 56 | 3, 19, 22, 2, 19 | itgmulc2lem2 23599 |
. . . . . . . . 9
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 57 | 56 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝜑 → (i ·
((ℜ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 58 | 55, 57 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → ((ℜ‘𝐶) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 59 | 53, 58 | oveq12d 6668 |
. . . . . 6
⊢ (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))) |
| 60 | 47, 52, 59 | 3eqtrd 2660 |
. . . . 5
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))) |
| 61 | 46 | oveq2d 6666 |
. . . . . 6
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 62 | 43, 48, 51 | adddid 10064 |
. . . . . 6
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 63 | 54, 34, 48 | mulassd 10063 |
. . . . . . . . 9
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥))) |
| 64 | 34, 10, 15, 27, 10 | itgmulc2lem2 23599 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) |
| 65 | 64 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝜑 → (i ·
((ℑ‘𝐶) ·
∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 66 | 63, 65 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 67 | 54, 34, 54, 49 | mul4d 10248 |
. . . . . . . . 9
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥))) |
| 68 | | ixi 10656 |
. . . . . . . . . . 11
⊢ (i
· i) = -1 |
| 69 | 68 | oveq1i 6660 |
. . . . . . . . . 10
⊢ ((i
· i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 70 | 34, 49 | mulcld 10060 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 71 | 70 | mulm1d 10482 |
. . . . . . . . . 10
⊢ (𝜑 → (-1 ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 72 | 69, 71 | syl5eq 2668 |
. . . . . . . . 9
⊢ (𝜑 → ((i · i) ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 73 | 34, 49 | mulneg1d 10483 |
. . . . . . . . . 10
⊢ (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 74 | 29, 19, 22, 28, 19 | itgmulc2lem2 23599 |
. . . . . . . . . 10
⊢ (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 75 | 73, 74 | eqtr3d 2658 |
. . . . . . . . 9
⊢ (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 76 | 67, 72, 75 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 77 | 66, 76 | oveq12d 6668 |
. . . . . . 7
⊢ (𝜑 → (((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 78 | 40, 33 | addcomd 10238 |
. . . . . . 7
⊢ (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 79 | 77, 78 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → (((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 80 | 61, 62, 79 | 3eqtrd 2660 |
. . . . 5
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 81 | 60, 80 | oveq12d 6668 |
. . . 4
⊢ (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 82 | 45, 81 | eqtrd 2656 |
. . 3
⊢ (𝜑 → (((ℜ‘𝐶) + (i ·
(ℑ‘𝐶)))
· ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 83 | 35, 20 | mulcld 10060 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 84 | 12, 83 | negsubd 10398 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 85 | 35, 20 | mulneg1d 10483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵))) |
| 86 | 85 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 87 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 88 | 87, 9 | remuld 13958 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 89 | 84, 86, 88 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵))) |
| 90 | 89 | itgeq2dv 23548 |
. . . . 5
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥) |
| 91 | 12, 16, 31, 32 | itgadd 23591 |
. . . . 5
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 92 | 90, 91 | eqtr3d 2658 |
. . . 4
⊢ (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 93 | 87, 9 | immuld 13959 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
| 94 | 93 | itgeq2dv 23548 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥) |
| 95 | 21, 23, 36, 37 | itgadd 23591 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 96 | 94, 95 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 97 | 96 | oveq2d 6666 |
. . . . 5
⊢ (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 98 | 54, 24, 38 | adddid 10064 |
. . . . 5
⊢ (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 99 | 97, 98 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 100 | 92, 99 | oveq12d 6668 |
. . 3
⊢ (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 101 | 41, 82, 100 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → (((ℜ‘𝐶) + (i ·
(ℑ‘𝐶)))
· ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥))) |
| 102 | 1 | replimd 13937 |
. . 3
⊢ (𝜑 → 𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶)))) |
| 103 | 102 | oveq1d 6665 |
. 2
⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥)) |
| 104 | 87, 9 | mulcld 10060 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 105 | 1, 8, 5 | iblmulc2 23597 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈
𝐿1) |
| 106 | 104, 105 | itgcnval 23566 |
. 2
⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥))) |
| 107 | 101, 103,
106 | 3eqtr4d 2666 |
1
⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |