| Step | Hyp | Ref
| Expression |
| 1 | | ssid 3624 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
| 2 | | itgfsum.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 3 | | sseq1 3626 |
. . . . . 6
⊢ (𝑡 = ∅ → (𝑡 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
| 4 | | sumeq1 14419 |
. . . . . . . . . . . 12
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 5 | | sum0 14452 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
| 6 | 4, 5 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
| 7 | 6 | mpteq2dv 4745 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
| 8 | | fconstmpt 5163 |
. . . . . . . . . 10
⊢ (𝐴 × {0}) = (𝑥 ∈ 𝐴 ↦ 0) |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝐴 × {0})) |
| 10 | 9 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝐴 × {0}) ∈
𝐿1)) |
| 11 | 10 | anbi1d 741 |
. . . . . . 7
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝐴 × {0}) ∈ 𝐿1
∧ ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) |
| 12 | | itgz 23547 |
. . . . . . . . 9
⊢
∫𝐴0 d𝑥 = 0 |
| 13 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑡 = ∅ ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = 0) |
| 14 | 13 | itgeq2dv 23548 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴0 d𝑥) |
| 15 | | sumeq1 14419 |
. . . . . . . . . 10
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ ∅ ∫𝐴𝐶 d𝑥) |
| 16 | | sum0 14452 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
∅ ∫𝐴𝐶 d𝑥 = 0 |
| 17 | 15, 16 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑡 = ∅ → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = 0) |
| 18 | 12, 14, 17 | 3eqtr4a 2682 |
. . . . . . . 8
⊢ (𝑡 = ∅ → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) |
| 19 | 18 | biantrud 528 |
. . . . . . 7
⊢ (𝑡 = ∅ → ((𝐴 × {0}) ∈
𝐿1 ↔ ((𝐴 × {0}) ∈ 𝐿1
∧ ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) |
| 20 | 11, 19 | bitr4d 271 |
. . . . . 6
⊢ (𝑡 = ∅ → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ (𝐴 × {0}) ∈
𝐿1)) |
| 21 | 3, 20 | imbi12d 334 |
. . . . 5
⊢ (𝑡 = ∅ → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1))) |
| 22 | 21 | imbi2d 330 |
. . . 4
⊢ (𝑡 = ∅ → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)))) |
| 23 | | sseq1 3626 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (𝑡 ⊆ 𝐵 ↔ 𝑤 ⊆ 𝐵)) |
| 24 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
| 25 | 24 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶)) |
| 26 | 25 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1)) |
| 27 | 24 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑡 = 𝑤 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝑤 𝐶) |
| 28 | 27 | itgeq2dv 23548 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥) |
| 29 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑡 = 𝑤 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
| 30 | 28, 29 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑡 = 𝑤 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) |
| 31 | 26, 30 | anbi12d 747 |
. . . . . 6
⊢ (𝑡 = 𝑤 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
| 32 | 23, 31 | imbi12d 334 |
. . . . 5
⊢ (𝑡 = 𝑤 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)))) |
| 33 | 32 | imbi2d 330 |
. . . 4
⊢ (𝑡 = 𝑤 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))))) |
| 34 | | sseq1 3626 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑡 ⊆ 𝐵 ↔ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) |
| 35 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
| 36 | 35 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶)) |
| 37 | 36 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1)) |
| 38 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑡 = (𝑤 ∪ {𝑧}) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) |
| 39 | 38 | itgeq2dv 23548 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥) |
| 40 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
| 41 | 39, 40 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
| 42 | 37, 41 | anbi12d 747 |
. . . . . 6
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
| 43 | 34, 42 | imbi12d 334 |
. . . . 5
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
| 44 | 43 | imbi2d 330 |
. . . 4
⊢ (𝑡 = (𝑤 ∪ {𝑧}) → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
| 45 | | sseq1 3626 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (𝑡 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
| 46 | | sumeq1 14419 |
. . . . . . . . 9
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 47 | 46 | mpteq2dv 4745 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
| 48 | 47 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈
𝐿1)) |
| 49 | 46 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑡 = 𝐵 ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑡 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 50 | 49 | itgeq2dv 23548 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → ∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥) |
| 51 | | sumeq1 14419 |
. . . . . . . 8
⊢ (𝑡 = 𝐵 → Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥) |
| 52 | 50, 51 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑡 = 𝐵 → (∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥 ↔ ∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |
| 53 | 48, 52 | anbi12d 747 |
. . . . . 6
⊢ (𝑡 = 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥) ↔ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
| 54 | 45, 53 | imbi12d 334 |
. . . . 5
⊢ (𝑡 = 𝐵 → ((𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥)) ↔ (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
| 55 | 54 | imbi2d 330 |
. . . 4
⊢ (𝑡 = 𝐵 → ((𝜑 → (𝑡 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑡 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑡 𝐶 d𝑥 = Σ𝑘 ∈ 𝑡 ∫𝐴𝐶 d𝑥))) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))))) |
| 56 | | itgfsum.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 57 | | ibl0 23553 |
. . . . . 6
⊢ (𝐴 ∈ dom vol → (𝐴 × {0}) ∈
𝐿1) |
| 58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 × {0}) ∈
𝐿1) |
| 59 | 58 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝐴 × {0}) ∈
𝐿1)) |
| 60 | | ssun1 3776 |
. . . . . . . . . 10
⊢ 𝑤 ⊆ (𝑤 ∪ {𝑧}) |
| 61 | | sstr 3611 |
. . . . . . . . . 10
⊢ ((𝑤 ⊆ (𝑤 ∪ {𝑧}) ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵) → 𝑤 ⊆ 𝐵) |
| 62 | 60, 61 | mpan 706 |
. . . . . . . . 9
⊢ ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → 𝑤 ⊆ 𝐵) |
| 63 | 62 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) |
| 64 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝐶 |
| 65 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 |
| 66 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
| 67 | 64, 65, 66 | cbvsumi 14427 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 |
| 68 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑤) |
| 69 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑤) |
| 70 | 68, 69 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∩ {𝑧}) = ∅) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∩ {𝑧}) = ∅) |
| 72 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
| 73 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
| 74 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
| 75 | | ssfi 8180 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈ Fin ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵) → (𝑤 ∪ {𝑧}) ∈ Fin) |
| 76 | 73, 74, 75 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) ∈ Fin) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ∈ Fin) |
| 78 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑤 ∪ {𝑧}) ⊆ 𝐵) |
| 79 | 78 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
| 80 | | itgfsum.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 81 | | iblmbf 23534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| 83 | | itgfsum.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
| 84 | 83 | anass1rs 849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 85 | 82, 84 | mbfmptcl 23404 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 86 | 85 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 87 | 86 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 88 | 87 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 89 | 64 | nfel1 2779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑚 𝐶 ∈ ℂ |
| 90 | 65 | nfel1 2779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ |
| 91 | 66 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑚 → (𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ)) |
| 92 | 89, 90, 91 | cbvral 3167 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ ↔ ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 93 | 88, 92 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 94 | 93 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ 𝐵) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 95 | 79, 94 | syldan 487 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 96 | 71, 72, 77, 95 | fsumsplit 14471 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶)) |
| 97 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑧 ∈ V |
| 98 | 74 | unssbd 3791 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
| 99 | 97 | snss 4316 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
| 100 | 98, 99 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
| 101 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 102 | | csbeq1 3536 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑧 → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 103 | 102 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 = 𝑧 → (⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 104 | 103 | rspcv 3305 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝐵 → (∀𝑚 ∈ 𝐵 ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 105 | 101, 93, 104 | sylc 65 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 106 | 102 | sumsn 14475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧
⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 107 | 97, 105, 106 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 108 | 107 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + Σ𝑚 ∈ {𝑧}⦋𝑚 / 𝑘⦌𝐶) = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 109 | 96, 108 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 110 | 67, 109 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 111 | 110 | mpteq2dva 4744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
| 112 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) |
| 113 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
| 114 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥
+ |
| 115 | | nfcsb1v 3549 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 |
| 116 | 113, 114,
115 | nfov 6676 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 117 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
| 118 | | csbeq1a 3542 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ⦋𝑧 / 𝑘⦌𝐶 = ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 119 | 117, 118 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) = (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
| 120 | 112, 116,
119 | cbvmpt 4749 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ (Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
| 121 | 111, 120 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) = (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
| 123 | | sumex 14418 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑚 ∈
𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
| 124 | 123 | csbex 4793 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑦 /
𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V |
| 125 | 124 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 ∈ V) |
| 126 | 64, 65, 66 | cbvsumi 14427 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
| 127 | 126 | mpteq2i 4741 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
| 128 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 |
| 129 | 128, 113,
117 | cbvmpt 4749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
| 130 | 127, 129 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
| 131 | | simprl 794 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈
𝐿1) |
| 132 | 130, 131 | syl5eqelr 2706 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
| 133 | | elex 3212 |
. . . . . . . . . . . . . . . . . . 19
⊢
(⦋𝑧 /
𝑘⦌𝐶 ∈ ℂ →
⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 134 | 105, 133 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 135 | 134 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 136 | 135 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 137 | | nfv 1843 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 ∈ V |
| 138 | 115 | nfel1 2779 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V |
| 139 | 118 | eleq1d 2686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V)) |
| 140 | 137, 138,
139 | cbvral 3167 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ V ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 141 | 136, 140 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 142 | 141 | r19.21bi 2932 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 143 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦⦋𝑧 / 𝑘⦌𝐶 |
| 144 | 143, 115,
118 | cbvmpt 4749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 145 | 80 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1) |
| 146 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚(𝑥 ∈ 𝐴 ↦ 𝐶) ∈
𝐿1 |
| 147 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘𝐴 |
| 148 | 147, 65 | nfmpt 4746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) |
| 149 | 148 | nfel1 2779 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1 |
| 150 | 66 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑚 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶)) |
| 151 | 150 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑚 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1)) |
| 152 | 146, 149,
151 | cbvral 3167 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑘 ∈
𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1 ↔
∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
| 153 | 145, 152 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
| 154 | 153 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
| 155 | 102 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑧 → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
| 156 | 155 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈ 𝐿1 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1)) |
| 157 | 156 | rspcv 3305 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝐵 → (∀𝑚 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1)) |
| 158 | 100, 154,
157 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
| 159 | 144, 158 | syl5eqelr 2706 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
| 160 | 159 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ∈
𝐿1) |
| 161 | 125, 132,
142, 160 | ibladd 23587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑦 ∈ 𝐴 ↦ (⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) ∈
𝐿1) |
| 162 | 122, 161 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈
𝐿1) |
| 163 | 125, 132,
142, 160 | itgadd 23591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦)) |
| 164 | 119, 112,
116 | cbvitg 23542 |
. . . . . . . . . . . . . . 15
⊢
∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = ∫𝐴(⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) d𝑦 |
| 165 | 117, 128,
113 | cbvitg 23542 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 |
| 166 | 118, 143,
115 | cbvitg 23542 |
. . . . . . . . . . . . . . . 16
⊢
∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦 |
| 167 | 165, 166 | oveq12i 6662 |
. . . . . . . . . . . . . . 15
⊢
(∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (∫𝐴⦋𝑦 / 𝑥⦌Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑦 + ∫𝐴⦋𝑦 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 d𝑦) |
| 168 | 163, 164,
167 | 3eqtr4g 2681 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
| 169 | 109 | itgeq2dv 23548 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
| 170 | 169 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴(Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 + ⦋𝑧 / 𝑘⦌𝐶) d𝑥) |
| 171 | | eqidd 2623 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (𝑤 ∪ {𝑧}) = (𝑤 ∪ {𝑧})) |
| 172 | 74 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → 𝑚 ∈ 𝐵) |
| 173 | 94 | an32s 846 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 ∈ ℂ) |
| 174 | 154 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ ⦋𝑚 / 𝑘⦌𝐶) ∈
𝐿1) |
| 175 | 173, 174 | itgcl 23550 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ 𝐵) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
| 176 | 172, 175 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑚 ∈ (𝑤 ∪ {𝑧})) → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
| 177 | 70, 171, 76, 176 | fsumsplit 14471 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
| 178 | 177 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
| 179 | | simprr 796 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) |
| 180 | | itgeq2 23544 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 181 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶) |
| 182 | 180, 181 | mprg 2926 |
. . . . . . . . . . . . . . . . 17
⊢
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
| 183 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚∫𝐴𝐶 d𝑥 |
| 184 | 147, 65 | nfitg 23541 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
| 185 | 66 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 = 𝑚 ∧ 𝑥 ∈ 𝐴) → 𝐶 = ⦋𝑚 / 𝑘⦌𝐶) |
| 186 | 185 | itgeq2dv 23548 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑚 → ∫𝐴𝐶 d𝑥 = ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 187 | 183, 184,
186 | cbvsumi 14427 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
𝑤 ∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
| 188 | 179, 182,
187 | 3eqtr3g 2679 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 189 | 105, 158 | itgcl 23550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
| 190 | 189 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) |
| 191 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑧 ∧ 𝑥 ∈ 𝐴) → ⦋𝑚 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 192 | 191 | itgeq2dv 23548 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑧 → ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
| 193 | 192 | sumsn 14475 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ V ∧ ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 ∈ ℂ) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
| 194 | 97, 190, 193 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) |
| 195 | 194 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 196 | 188, 195 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥) = (Σ𝑚 ∈ 𝑤 ∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 + Σ𝑚 ∈ {𝑧}∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥)) |
| 197 | 178, 196 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 = (∫𝐴Σ𝑚 ∈ 𝑤 ⦋𝑚 / 𝑘⦌𝐶 d𝑥 + ∫𝐴⦋𝑧 / 𝑘⦌𝐶 d𝑥)) |
| 198 | 168, 170,
197 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 199 | | itgeq2 23544 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥) |
| 200 | 67 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 → Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶) |
| 201 | 199, 200 | mprg 2926 |
. . . . . . . . . . . . 13
⊢
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = ∫𝐴Σ𝑚 ∈ (𝑤 ∪ {𝑧})⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
| 202 | 183, 184,
186 | cbvsumi 14427 |
. . . . . . . . . . . . 13
⊢
Σ𝑘 ∈
(𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥 = Σ𝑚 ∈ (𝑤 ∪ {𝑧})∫𝐴⦋𝑚 / 𝑘⦌𝐶 d𝑥 |
| 203 | 198, 201,
202 | 3eqtr4g 2681 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥) |
| 204 | 162, 203 | jca 554 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) ∧ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)) |
| 205 | 204 | ex 450 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑤 ∧ (𝑤 ∪ {𝑧}) ⊆ 𝐵)) → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))) |
| 206 | 205 | expr 643 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
| 207 | 206 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → (((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
| 208 | 63, 207 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑤) → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥)))) |
| 209 | 208 | expcom 451 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑤 → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
| 210 | 209 | adantl 482 |
. . . . 5
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → (𝜑 → ((𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥)) → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
| 211 | 210 | a2d 29 |
. . . 4
⊢ ((𝑤 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑤) → ((𝜑 → (𝑤 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝑤 𝐶 d𝑥 = Σ𝑘 ∈ 𝑤 ∫𝐴𝐶 d𝑥))) → (𝜑 → ((𝑤 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ (𝑤 ∪ {𝑧})𝐶 d𝑥 = Σ𝑘 ∈ (𝑤 ∪ {𝑧})∫𝐴𝐶 d𝑥))))) |
| 212 | 22, 33, 44, 55, 59, 211 | findcard2s 8201 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)))) |
| 213 | 2, 212 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥))) |
| 214 | 1, 213 | mpi 20 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝐿1 ∧
∫𝐴Σ𝑘 ∈ 𝐵 𝐶 d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴𝐶 d𝑥)) |