| Step | Hyp | Ref
| Expression |
| 1 | | ffvelrn 6357 |
. . . . . . . . . 10
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(𝐺‘𝑡) ∈ ℝ) |
| 2 | 1 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(𝐺‘𝑡) ∈ ℂ) |
| 3 | | i1ff 23443 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 4 | 3 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝐹‘𝑡) ∈
ℝ) |
| 5 | 4 | recnd 10068 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝐹‘𝑡) ∈
ℂ) |
| 6 | | subcl 10280 |
. . . . . . . . 9
⊢ (((𝐺‘𝑡) ∈ ℂ ∧ (𝐹‘𝑡) ∈ ℂ) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
| 7 | 2, 5, 6 | syl2anr 495 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
| 8 | 7 | anandirs 874 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺‘𝑡) − (𝐹‘𝑡)) ∈ ℂ) |
| 9 | 8 | abscld 14175 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ ℝ) |
| 10 | 9 | rexrd 10089 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈
ℝ*) |
| 11 | 8 | absge0d 14183 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) |
| 12 | | elxrge0 12281 |
. . . . 5
⊢
((abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ (0[,]+∞) ↔
((abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) |
| 13 | 10, 11, 12 | sylanbrc 698 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ∈ (0[,]+∞)) |
| 14 | | eqid 2622 |
. . . 4
⊢ (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) |
| 15 | 13, 14 | fmptd 6385 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 16 | 15 | 3adant2 1080 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 17 | | reex 10027 |
. . . . . . 7
⊢ ℝ
∈ V |
| 18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → ℝ
∈ V) |
| 19 | | fvexd 6203 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈ V) |
| 20 | | fvexd 6203 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐹‘𝑡)) ∈ V) |
| 21 | | eqidd 2623 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) |
| 22 | | eqidd 2623 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) |
| 23 | 18, 19, 20, 21, 22 | offval2 6914 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∘𝑓
+ (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 24 | 23 | fveq2d 6195 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) =
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
| 25 | | id 22 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
𝐺:ℝ⟶ℝ) |
| 26 | 25 | feqmptd 6249 |
. . . . . . . . 9
⊢ (𝐺:ℝ⟶ℝ →
𝐺 = (𝑡 ∈ ℝ ↦ (𝐺‘𝑡))) |
| 27 | | absf 14077 |
. . . . . . . . . . 11
⊢
abs:ℂ⟶ℝ |
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐺:ℝ⟶ℝ →
abs:ℂ⟶ℝ) |
| 29 | 28 | feqmptd 6249 |
. . . . . . . . 9
⊢ (𝐺:ℝ⟶ℝ →
abs = (𝑥 ∈ ℂ
↦ (abs‘𝑥))) |
| 30 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑥 = (𝐺‘𝑡) → (abs‘𝑥) = (abs‘(𝐺‘𝑡))) |
| 31 | 2, 26, 29, 30 | fmptco 6396 |
. . . . . . . 8
⊢ (𝐺:ℝ⟶ℝ →
(abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) |
| 32 | 31 | adantl 482 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (abs ∘
𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) |
| 33 | | iblmbf 23534 |
. . . . . . . . 9
⊢ (𝐺 ∈ 𝐿1
→ 𝐺 ∈
MblFn) |
| 34 | | ftc1anclem1 33485 |
. . . . . . . . 9
⊢ ((𝐺:ℝ⟶ℝ ∧
𝐺 ∈ MblFn) → (abs
∘ 𝐺) ∈
MblFn) |
| 35 | 33, 34 | sylan2 491 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝐺 ∈
𝐿1) → (abs ∘ 𝐺) ∈ MblFn) |
| 36 | 35 | ancoms 469 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (abs ∘
𝐺) ∈
MblFn) |
| 37 | 32, 36 | eqeltrrd 2702 |
. . . . . 6
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
MblFn) |
| 38 | 37 | 3adant1 1079 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
MblFn) |
| 39 | 2 | abscld 14175 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
| 40 | 2 | absge0d 14183 |
. . . . . . . 8
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) → 0
≤ (abs‘(𝐺‘𝑡))) |
| 41 | | elrege0 12278 |
. . . . . . . 8
⊢
((abs‘(𝐺‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝐺‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑡)))) |
| 42 | 39, 40, 41 | sylanbrc 698 |
. . . . . . 7
⊢ ((𝐺:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
(0[,)+∞)) |
| 43 | | eqid 2622 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) |
| 44 | 42, 43 | fmptd 6385 |
. . . . . 6
⊢ (𝐺:ℝ⟶ℝ →
(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))):ℝ⟶(0[,)+∞)) |
| 45 | 44 | 3ad2ant3 1084 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))):ℝ⟶(0[,)+∞)) |
| 46 | | iftrue 4092 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ,
(abs‘(𝐺‘𝑡)), 0) = (abs‘(𝐺‘𝑡))) |
| 47 | 46 | mpteq2ia 4740 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(𝐺‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) |
| 48 | 47 | fveq2i 6194 |
. . . . . . 7
⊢
(∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) |
| 49 | 1 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺‘𝑡) ∈ ℝ) |
| 50 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ) |
| 51 | 50 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺‘𝑡))) |
| 52 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → 𝐺 ∈
𝐿1) |
| 53 | 51, 52 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺‘𝑡)) ∈
𝐿1) |
| 54 | 49, 53, 37 | iblabsnc 33474 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈
𝐿1) |
| 55 | 39 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
| 56 | 40 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐺‘𝑡))) |
| 57 | 55, 56 | iblpos 23559 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈ 𝐿1
↔ ((𝑡 ∈ ℝ
↦ (abs‘(𝐺‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ))) |
| 58 | 54, 57 | mpbid 222 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ)) |
| 59 | 58 | simprd 479 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐺‘𝑡)), 0))) ∈ ℝ) |
| 60 | 48, 59 | syl5eqelr 2706 |
. . . . . 6
⊢ ((𝐺 ∈ 𝐿1
∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) ∈ ℝ) |
| 61 | 60 | 3adant1 1079 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) ∈ ℝ) |
| 62 | 5 | abscld 14175 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝐹‘𝑡)) ∈ ℝ) |
| 63 | 5 | absge0d 14183 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝐹‘𝑡))) |
| 64 | | elrege0 12278 |
. . . . . . . 8
⊢
((abs‘(𝐹‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝐹‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐹‘𝑡)))) |
| 65 | 62, 63, 64 | sylanbrc 698 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝐹‘𝑡)) ∈ (0[,)+∞)) |
| 66 | | eqid 2622 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡))) |
| 67 | 65, 66 | fmptd 6385 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))):ℝ⟶(0[,)+∞)) |
| 68 | 67 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))):ℝ⟶(0[,)+∞)) |
| 69 | | iftrue 4092 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ,
(abs‘(𝐹‘𝑡)), 0) = (abs‘(𝐹‘𝑡))) |
| 70 | 69 | mpteq2ia 4740 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡))) |
| 71 | 70 | fveq2i 6194 |
. . . . . . 7
⊢
(∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) |
| 72 | 3 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 = (𝑡 ∈ ℝ ↦ (𝐹‘𝑡))) |
| 73 | | i1fibl 23574 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
𝐿1) |
| 74 | 72, 73 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (𝐹‘𝑡)) ∈
𝐿1) |
| 75 | 27 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ dom ∫1
→ abs:ℂ⟶ℝ) |
| 76 | 75 | feqmptd 6249 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ abs = (𝑥 ∈
ℂ ↦ (abs‘𝑥))) |
| 77 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘𝑡) → (abs‘𝑥) = (abs‘(𝐹‘𝑡))) |
| 78 | 5, 72, 76, 77 | fmptco 6396 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (abs ∘ 𝐹) =
(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))) |
| 79 | | i1fmbf 23442 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈
MblFn) |
| 80 | | ftc1anclem1 33485 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℝ⟶ℝ ∧
𝐹 ∈ MblFn) → (abs
∘ 𝐹) ∈
MblFn) |
| 81 | 3, 79, 80 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (abs ∘ 𝐹)
∈ MblFn) |
| 82 | 78, 81 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ MblFn) |
| 83 | 4, 74, 82 | iblabsnc 33474 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈
𝐿1) |
| 84 | 62, 63 | iblpos 23559 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ ((𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ 𝐿1 ↔
((𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ))) |
| 85 | 83, 84 | mpbid 222 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ ((𝑡 ∈ ℝ
↦ (abs‘(𝐹‘𝑡))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ)) |
| 86 | 85 | simprd 479 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹‘𝑡)), 0))) ∈ ℝ) |
| 87 | 71, 86 | syl5eqelr 2706 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) ∈ ℝ) |
| 88 | 87 | 3ad2ant1 1082 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐹‘𝑡)))) ∈ ℝ) |
| 89 | 38, 45, 61, 68, 88 | itg2addnc 33464 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) =
((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡)))))) |
| 90 | 24, 89 | eqtr3d 2658 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐺‘𝑡)))) +
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(𝐹‘𝑡)))))) |
| 91 | 61, 88 | readdcld 10069 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺‘𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(𝐹‘𝑡))))) ∈
ℝ) |
| 92 | 90, 91 | eqeltrd 2701 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) ∈ ℝ) |
| 93 | | readdcl 10019 |
. . . . . . . . 9
⊢
(((abs‘(𝐺‘𝑡)) ∈ ℝ ∧ (abs‘(𝐹‘𝑡)) ∈ ℝ) → ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
| 94 | 39, 62, 93 | syl2anr 495 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
| 95 | 94 | anandirs 874 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ) |
| 96 | 95 | rexrd 10089 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈
ℝ*) |
| 97 | 39 | adantll 750 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐺‘𝑡)) ∈
ℝ) |
| 98 | 62 | adantlr 751 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘(𝐹‘𝑡)) ∈
ℝ) |
| 99 | 40 | adantll 750 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐺‘𝑡))) |
| 100 | 63 | adantlr 751 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(𝐹‘𝑡))) |
| 101 | 97, 98, 99, 100 | addge0d 10603 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 102 | | elxrge0 12281 |
. . . . . 6
⊢
(((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ (0[,]+∞) ↔
(((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ ℝ* ∧ 0 ≤
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 103 | 96, 101, 102 | sylanbrc 698 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))) ∈ (0[,]+∞)) |
| 104 | | eqid 2622 |
. . . . 5
⊢ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 105 | 103, 104 | fmptd 6385 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 106 | 105 | 3adant2 1080 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 107 | | abs2dif2 14073 |
. . . . . . . 8
⊢ (((𝐺‘𝑡) ∈ ℂ ∧ (𝐹‘𝑡) ∈ ℂ) → (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 108 | 2, 5, 107 | syl2anr 495 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 109 | 108 | anandirs 874 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) →
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 110 | 109 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) →
∀𝑡 ∈ ℝ
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) |
| 111 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → ℝ
∈ V) |
| 112 | | eqidd 2623 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) |
| 113 | | eqidd 2623 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 114 | 111, 9, 95, 112, 113 | ofrfval2 6915 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))) ≤ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 115 | 110, 114 | mpbird 247 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 116 | 115 | 3adant2 1080 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) |
| 117 | | itg2le 23506 |
. . 3
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
| 118 | 16, 106, 116, 117 | syl3anc 1326 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) |
| 119 | | itg2lecl 23505 |
. 2
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝐺‘𝑡)) + (abs‘(𝐹‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) |
| 120 | 16, 92, 118, 119 | syl3anc 1326 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈
𝐿1 ∧ 𝐺:ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((𝐺‘𝑡) − (𝐹‘𝑡))))) ∈ ℝ) |