Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem4 Structured version   Visualization version   GIF version

Theorem ftc1anclem4 33488
Description: Lemma for ftc1anc 33493. (Contributed by Brendan Leahy, 17-Jun-2018.)
Assertion
Ref Expression
ftc1anclem4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Distinct variable groups:   𝑡,𝐹   𝑡,𝐺

Proof of Theorem ftc1anclem4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6357 . . . . . . . . . 10 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
21recnd 10068 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℂ)
3 i1ff 23443 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
43ffvelrnda 6359 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℝ)
54recnd 10068 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (𝐹𝑡) ∈ ℂ)
6 subcl 10280 . . . . . . . . 9 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
72, 5, 6syl2anr 495 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
87anandirs 874 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((𝐺𝑡) − (𝐹𝑡)) ∈ ℂ)
98abscld 14175 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ)
109rexrd 10089 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ*)
118absge0d 14183 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡))))
12 elxrge0 12281 . . . . 5 ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞) ↔ ((abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
1310, 11, 12sylanbrc 698 . . . 4 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ∈ (0[,]+∞))
14 eqid 2622 . . . 4 (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))
1513, 14fmptd 6385 . . 3 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
16153adant2 1080 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞))
17 reex 10027 . . . . . . 7 ℝ ∈ V
1817a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
19 fvexd 6203 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ V)
20 fvexd 6203 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ V)
21 eqidd 2623 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
22 eqidd 2623 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
2318, 19, 20, 21, 22offval2 6914 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
2423fveq2d 6195 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
25 id 22 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → 𝐺:ℝ⟶ℝ)
2625feqmptd 6249 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
27 absf 14077 . . . . . . . . . . 11 abs:ℂ⟶ℝ
2827a1i 11 . . . . . . . . . 10 (𝐺:ℝ⟶ℝ → abs:ℂ⟶ℝ)
2928feqmptd 6249 . . . . . . . . 9 (𝐺:ℝ⟶ℝ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
30 fveq2 6191 . . . . . . . . 9 (𝑥 = (𝐺𝑡) → (abs‘𝑥) = (abs‘(𝐺𝑡)))
312, 26, 29, 30fmptco 6396 . . . . . . . 8 (𝐺:ℝ⟶ℝ → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
3231adantl 482 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
33 iblmbf 23534 . . . . . . . . 9 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
34 ftc1anclem1 33485 . . . . . . . . 9 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ MblFn) → (abs ∘ 𝐺) ∈ MblFn)
3533, 34sylan2 491 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝐺 ∈ 𝐿1) → (abs ∘ 𝐺) ∈ MblFn)
3635ancoms 469 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (abs ∘ 𝐺) ∈ MblFn)
3732, 36eqeltrrd 2702 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
38373adant1 1079 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn)
392abscld 14175 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
402absge0d 14183 . . . . . . . 8 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
41 elrege0 12278 . . . . . . . 8 ((abs‘(𝐺𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑡))))
4239, 40, 41sylanbrc 698 . . . . . . 7 ((𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ (0[,)+∞))
43 eqid 2622 . . . . . . 7 (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4442, 43fmptd 6385 . . . . . 6 (𝐺:ℝ⟶ℝ → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
45443ad2ant3 1084 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))):ℝ⟶(0[,)+∞))
46 iftrue 4092 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0) = (abs‘(𝐺𝑡)))
4746mpteq2ia 4740 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))
4847fveq2i 6194 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))))
491adantll 750 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (𝐺𝑡) ∈ ℝ)
50 simpr 477 . . . . . . . . . . . 12 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺:ℝ⟶ℝ)
5150feqmptd 6249 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 = (𝑡 ∈ ℝ ↦ (𝐺𝑡)))
52 simpl 473 . . . . . . . . . . 11 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → 𝐺 ∈ 𝐿1)
5351, 52eqeltrrd 2702 . . . . . . . . . 10 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (𝐺𝑡)) ∈ 𝐿1)
5449, 53, 37iblabsnc 33474 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1)
5539adantll 750 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
5640adantll 750 . . . . . . . . . 10 (((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
5755, 56iblpos 23559 . . . . . . . . 9 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)))
5854, 57mpbid 222 . . . . . . . 8 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ))
5958simprd 479 . . . . . . 7 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐺𝑡)), 0))) ∈ ℝ)
6048, 59syl5eqelr 2706 . . . . . 6 ((𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
61603adant1 1079 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) ∈ ℝ)
625abscld 14175 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
635absge0d 14183 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
64 elrege0 12278 . . . . . . . 8 ((abs‘(𝐹𝑡)) ∈ (0[,)+∞) ↔ ((abs‘(𝐹𝑡)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑡))))
6562, 63, 64sylanbrc 698 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ (0[,)+∞))
66 eqid 2622 . . . . . . 7 (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
6765, 66fmptd 6385 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
68673ad2ant1 1082 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))):ℝ⟶(0[,)+∞))
69 iftrue 4092 . . . . . . . . 9 (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0) = (abs‘(𝐹𝑡)))
7069mpteq2ia 4740 . . . . . . . 8 (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0)) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))
7170fveq2i 6194 . . . . . . 7 (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) = (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
723feqmptd 6249 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 = (𝑡 ∈ ℝ ↦ (𝐹𝑡)))
73 i1fibl 23574 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
7472, 73eqeltrrd 2702 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (𝐹𝑡)) ∈ 𝐿1)
7527a1i 11 . . . . . . . . . . . . 13 (𝐹 ∈ dom ∫1 → abs:ℂ⟶ℝ)
7675feqmptd 6249 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)))
77 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑡) → (abs‘𝑥) = (abs‘(𝐹𝑡)))
785, 72, 76, 77fmptco 6396 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) = (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))
79 i1fmbf 23442 . . . . . . . . . . . 12 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
80 ftc1anclem1 33485 . . . . . . . . . . . 12 ((𝐹:ℝ⟶ℝ ∧ 𝐹 ∈ MblFn) → (abs ∘ 𝐹) ∈ MblFn)
813, 79, 80syl2anc 693 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (abs ∘ 𝐹) ∈ MblFn)
8278, 81eqeltrrd 2702 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn)
834, 74, 82iblabsnc 33474 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1)
8462, 63iblpos 23559 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ 𝐿1 ↔ ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)))
8583, 84mpbid 222 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))) ∈ MblFn ∧ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ))
8685simprd 479 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ, (abs‘(𝐹𝑡)), 0))) ∈ ℝ)
8771, 86syl5eqelr 2706 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
88873ad2ant1 1082 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡)))) ∈ ℝ)
8938, 45, 61, 68, 88itg2addnc 33464 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘((𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡))) ∘𝑓 + (𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
9024, 89eqtr3d 2658 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) = ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))))
9161, 88readdcld 10069 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → ((∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐺𝑡)))) + (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(𝐹𝑡))))) ∈ ℝ)
9290, 91eqeltrd 2701 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ)
93 readdcl 10019 . . . . . . . . 9 (((abs‘(𝐺𝑡)) ∈ ℝ ∧ (abs‘(𝐹𝑡)) ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9439, 62, 93syl2anr 495 . . . . . . . 8 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9594anandirs 874 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ)
9695rexrd 10089 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ*)
9739adantll 750 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐺𝑡)) ∈ ℝ)
9862adantlr 751 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘(𝐹𝑡)) ∈ ℝ)
9940adantll 750 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐺𝑡)))
10063adantlr 751 . . . . . . 7 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ (abs‘(𝐹𝑡)))
10197, 98, 99, 100addge0d 10603 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
102 elxrge0 12281 . . . . . 6 (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞) ↔ (((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ ℝ* ∧ 0 ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
10396, 101, 102sylanbrc 698 . . . . 5 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))) ∈ (0[,]+∞))
104 eqid 2622 . . . . 5 (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
105103, 104fmptd 6385 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
1061053adant2 1080 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞))
107 abs2dif2 14073 . . . . . . . 8 (((𝐺𝑡) ∈ ℂ ∧ (𝐹𝑡) ∈ ℂ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
1082, 5, 107syl2anr 495 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑡 ∈ ℝ) ∧ (𝐺:ℝ⟶ℝ ∧ 𝑡 ∈ ℝ)) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
109108anandirs 874 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) ∧ 𝑡 ∈ ℝ) → (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
110109ralrimiva 2966 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))
11117a1i 11 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ℝ ∈ V)
112 eqidd 2623 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))))
113 eqidd 2623 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
114111, 9, 95, 112, 113ofrfval2 6915 . . . . 5 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → ((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))) ↔ ∀𝑡 ∈ ℝ (abs‘((𝐺𝑡) − (𝐹𝑡))) ≤ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
115110, 114mpbird 247 . . . 4 ((𝐹 ∈ dom ∫1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
1161153adant2 1080 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))
117 itg2le 23506 . . 3 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))) ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
11816, 106, 116, 117syl3anc 1326 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))))
119 itg2lecl 23505 . 2 (((𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡)))):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡))))) ∈ ℝ ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ≤ (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝐺𝑡)) + (abs‘(𝐹𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
12016, 92, 118, 119syl3anc 1326 1 ((𝐹 ∈ dom ∫1𝐺 ∈ 𝐿1𝐺:ℝ⟶ℝ) → (∫2‘(𝑡 ∈ ℝ ↦ (abs‘((𝐺𝑡) − (𝐹𝑡))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  cc 9934  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  *cxr 10073  cle 10075  cmin 10266  [,)cico 12177  [,]cicc 12178  abscabs 13974  MblFncmbf 23383  1citg1 23384  2citg2 23385  𝐿1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437
This theorem is referenced by:  ftc1anclem5  33489  ftc1anclem6  33490
  Copyright terms: Public domain W3C validator