| Step | Hyp | Ref
| Expression |
| 1 | | itgmulc2.1 |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 2 | | itgmulc2.2 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 3 | | itgmulc2.3 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 4 | | iblmbf 23534 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 6 | 1, 2, 5 | mbfmulc2 23430 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
| 7 | | ifan 4134 |
. . . . . 6
⊢ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) |
| 8 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 9 | 5, 2 | mbfmptcl 23404 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 10 | 8, 9 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 11 | 10 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 12 | | elfzelz 12342 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
| 13 | 12 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℤ) |
| 14 | | ax-icn 9995 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
| 15 | | ine0 10465 |
. . . . . . . . . . . . . . 15
⊢ i ≠
0 |
| 16 | | expclz 12885 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈
ℂ) |
| 17 | 14, 15, 16 | mp3an12 1414 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ∈
ℂ) |
| 18 | 13, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ∈ ℂ) |
| 19 | | expne0i 12892 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0) |
| 20 | 14, 15, 19 | mp3an12 1414 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℤ →
(i↑𝑘) ≠
0) |
| 21 | 13, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (i↑𝑘) ≠ 0) |
| 22 | 11, 18, 21 | divcld 10801 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ) |
| 23 | 22 | recld 13934 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) |
| 24 | | 0re 10040 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
| 25 | | ifcl 4130 |
. . . . . . . . . . 11
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0
∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
| 26 | 23, 24, 25 | sylancl 694 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ) |
| 27 | 26 | rexrd 10089 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
ℝ*) |
| 28 | | max1 12016 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 29 | 24, 23, 28 | sylancr 695 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 30 | | elxrge0 12281 |
. . . . . . . . 9
⊢ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0
≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 31 | 27, 29, 30 | sylanbrc 698 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 32 | | 0e0iccpnf 12283 |
. . . . . . . . 9
⊢ 0 ∈
(0[,]+∞) |
| 33 | 32 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 34 | 31, 33 | ifclda 4120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 35 | 34 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈
(0[,]+∞)) |
| 36 | 7, 35 | syl5eqel 2705 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈
(0[,]+∞)) |
| 37 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 38 | 36, 37 | fmptd 6385 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))),
0)):ℝ⟶(0[,]+∞)) |
| 39 | | reex 10027 |
. . . . . . . . . . 11
⊢ ℝ
∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈
V) |
| 41 | 1 | abscld 14175 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝐶) ∈
ℝ) |
| 42 | 41 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (abs‘𝐶) ∈
ℝ) |
| 43 | 9 | abscld 14175 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
| 44 | 9 | absge0d 14183 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
| 45 | | elrege0 12278 |
. . . . . . . . . . . . 13
⊢
((abs‘𝐵)
∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤
(abs‘𝐵))) |
| 46 | 43, 44, 45 | sylanbrc 698 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ (0[,)+∞)) |
| 47 | | 0e0icopnf 12282 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(0[,)+∞) |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,)+∞)) |
| 49 | 46, 48 | ifclda 4120 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,)+∞)) |
| 50 | 49 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘𝐵), 0) ∈
(0[,)+∞)) |
| 51 | | fconstmpt 5163 |
. . . . . . . . . . 11
⊢ (ℝ
× {(abs‘𝐶)}) =
(𝑥 ∈ ℝ ↦
(abs‘𝐶)) |
| 52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ×
{(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦
(abs‘𝐶))) |
| 53 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) |
| 54 | 40, 42, 50, 52, 53 | offval2 6914 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)))) |
| 55 | | ovif2 6738 |
. . . . . . . . . . 11
⊢
((abs‘𝐶)
· if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0)) |
| 56 | 8, 9 | absmuld 14193 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵))) |
| 57 | 56 | ifeq1da 4116 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), ((abs‘𝐶) · 0)) = if(𝑥 ∈ 𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0))) |
| 58 | 41 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (abs‘𝐶) ∈
ℂ) |
| 59 | 58 | mul01d 10235 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((abs‘𝐶) · 0) =
0) |
| 60 | 59 | ifeq2d 4105 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), ((abs‘𝐶) · 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 61 | 57, 60 | eqtr3d 2658 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑥 ∈ 𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 62 | 55, 61 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝐶) · if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 63 | 62 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 64 | 54, 63 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ ×
{(abs‘𝐶)})
∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 65 | 64 | fveq2d 6195 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)))) |
| 66 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)) |
| 67 | 50, 66 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵),
0)):ℝ⟶(0[,)+∞)) |
| 68 | 2, 3 | iblabs 23595 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
| 69 | 43, 44 | iblpos 23559 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ))) |
| 70 | 68, 69 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ)) |
| 71 | 70 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0))) ∈
ℝ) |
| 72 | | abscl 14018 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℂ →
(abs‘𝐶) ∈
ℝ) |
| 73 | | absge0 14027 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℂ → 0 ≤
(abs‘𝐶)) |
| 74 | | elrege0 12278 |
. . . . . . . . . 10
⊢
((abs‘𝐶)
∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤
(abs‘𝐶))) |
| 75 | 72, 73, 74 | sylanbrc 698 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ →
(abs‘𝐶) ∈
(0[,)+∞)) |
| 76 | 1, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐶) ∈
(0[,)+∞)) |
| 77 | 67, 71, 76 | itg2mulc 23514 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 ·
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘𝐵), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))))) |
| 78 | 65, 77 | eqtr3d 2658 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘𝐵), 0))))) |
| 79 | 41, 71 | remulcld 10070 |
. . . . . 6
⊢ (𝜑 → ((abs‘𝐶) ·
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘𝐵), 0)))) ∈
ℝ) |
| 80 | 78, 79 | eqeltrd 2701 |
. . . . 5
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ) |
| 81 | 80 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ) |
| 82 | 10 | abscld 14175 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ) |
| 83 | 82 | rexrd 10089 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈
ℝ*) |
| 84 | 10 | absge0d 14183 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘(𝐶 · 𝐵))) |
| 85 | | elxrge0 12281 |
. . . . . . . . . 10
⊢
((abs‘(𝐶
· 𝐵)) ∈
(0[,]+∞) ↔ ((abs‘(𝐶 · 𝐵)) ∈ ℝ* ∧ 0 ≤
(abs‘(𝐶 ·
𝐵)))) |
| 86 | 83, 84, 85 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ (0[,]+∞)) |
| 87 | 32 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈
(0[,]+∞)) |
| 88 | 86, 87 | ifclda 4120 |
. . . . . . . 8
⊢ (𝜑 → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈
(0[,]+∞)) |
| 89 | 88 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈
(0[,]+∞)) |
| 90 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 91 | 89, 90 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)),
0)):ℝ⟶(0[,]+∞)) |
| 92 | 91 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)),
0)):ℝ⟶(0[,]+∞)) |
| 93 | 22 | releabsd 14190 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘)))) |
| 94 | 11, 18, 21 | absdivd 14194 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘)))) |
| 95 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℕ0) |
| 96 | 95 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 𝑘 ∈ ℕ0) |
| 97 | | absexp 14044 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ 𝑘
∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) |
| 98 | 14, 96, 97 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘)) |
| 99 | | absi 14026 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘i) = 1 |
| 100 | 99 | oveq1i 6660 |
. . . . . . . . . . . . . . . . 17
⊢
((abs‘i)↑𝑘) = (1↑𝑘) |
| 101 | | 1exp 12889 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℤ →
(1↑𝑘) =
1) |
| 102 | 13, 101 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (1↑𝑘) = 1) |
| 103 | 100, 102 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘i)↑𝑘) = 1) |
| 104 | 98, 103 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(i↑𝑘)) = 1) |
| 105 | 104 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1)) |
| 106 | 82 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
| 107 | 106 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ) |
| 108 | 107 | div1d 10793 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵))) |
| 109 | 94, 105, 108 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵))) |
| 110 | 93, 109 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵))) |
| 111 | 84 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘(𝐶 · 𝐵))) |
| 112 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢
((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) = if(0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵)) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵)))) |
| 113 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (0 = if(0
≤ (ℜ‘((𝐶
· 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ (abs‘(𝐶 · 𝐵)) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵)))) |
| 114 | 112, 113 | ifboth 4124 |
. . . . . . . . . . . 12
⊢
(((ℜ‘((𝐶
· 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵)) ∧ 0 ≤ (abs‘(𝐶 · 𝐵))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵))) |
| 115 | 110, 111,
114 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵))) |
| 116 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 117 | 116 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) |
| 118 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) = (abs‘(𝐶 · 𝐵))) |
| 119 | 118 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) = (abs‘(𝐶 · 𝐵))) |
| 120 | 115, 117,
119 | 3brtr4d 4685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 121 | 120 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 122 | | 0le0 11110 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
| 123 | 122 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → 0 ≤ 0) |
| 124 | | iffalse 4095 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0) |
| 125 | | iffalse 4095 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) = 0) |
| 126 | 123, 124,
125 | 3brtr4d 4685 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 127 | 121, 126 | pm2.61d1 171 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if(𝑥 ∈ 𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 128 | 7, 127 | syl5eqbr 4688 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 129 | 128 | ralrimivw 2967 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) |
| 130 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ℝ ∈
V) |
| 131 | 89 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈
(0[,]+∞)) |
| 132 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 133 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 134 | 130, 36, 131, 132, 133 | ofrfval2 6915 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 135 | 129, 134 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) |
| 136 | | itg2le 23506 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)))) |
| 137 | 38, 92, 135, 136 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)))) |
| 138 | | itg2lecl 23505 |
. . . 4
⊢ (((𝑥 ∈ ℝ ↦
if((𝑥 ∈ 𝐴 ∧ 0 ≤
(ℜ‘((𝐶 ·
𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ ∧
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝐴, (abs‘(𝐶 · 𝐵)), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 139 | 38, 81, 137, 138 | syl3anc 1326 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) →
(∫2‘(𝑥
∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 140 | 139 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ) |
| 141 | | eqidd 2623 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) |
| 142 | | eqidd 2623 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))) |
| 143 | 141, 142,
10 | isibl2 23533 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ))) |
| 144 | 6, 140, 143 | mpbir2and 957 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈
𝐿1) |