MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblmulc2 Structured version   Visualization version   GIF version

Theorem iblmulc2 23597
Description: Multiply an integral by a constant. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1 (𝜑𝐶 ∈ ℂ)
itgmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
iblmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iblmulc2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2.1 . . 3 (𝜑𝐶 ∈ ℂ)
2 itgmulc2.2 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
3 itgmulc2.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
4 iblmbf 23534 . . . 4 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
53, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
61, 2, 5mbfmulc2 23430 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
7 ifan 4134 . . . . . 6 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0)
81adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
95, 2mbfmptcl 23404 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
108, 9mulcld 10060 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
1110adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
12 elfzelz 12342 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
1312ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℤ)
14 ax-icn 9995 . . . . . . . . . . . . . . 15 i ∈ ℂ
15 ine0 10465 . . . . . . . . . . . . . . 15 i ≠ 0
16 expclz 12885 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
1714, 15, 16mp3an12 1414 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ∈ ℂ)
1813, 17syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ∈ ℂ)
19 expne0i 12892 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2014, 15, 19mp3an12 1414 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → (i↑𝑘) ≠ 0)
2113, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (i↑𝑘) ≠ 0)
2211, 18, 21divcld 10801 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((𝐶 · 𝐵) / (i↑𝑘)) ∈ ℂ)
2322recld 13934 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ)
24 0re 10040 . . . . . . . . . . 11 0 ∈ ℝ
25 ifcl 4130 . . . . . . . . . . 11 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2623, 24, 25sylancl 694 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ)
2726rexrd 10089 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ*)
28 max1 12016 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ∈ ℝ) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
2924, 23, 28sylancr 695 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
30 elxrge0 12281 . . . . . . . . 9 (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞) ↔ (if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
3127, 29, 30sylanbrc 698 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
32 0e0iccpnf 12283 . . . . . . . . 9 0 ∈ (0[,]+∞)
3332a1i 11 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
3431, 33ifclda 4120 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
3534adantr 481 . . . . . 6 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ∈ (0[,]+∞))
367, 35syl5eqel 2705 . . . . 5 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ∈ (0[,]+∞))
37 eqid 2622 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
3836, 37fmptd 6385 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞))
39 reex 10027 . . . . . . . . . . 11 ℝ ∈ V
4039a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ V)
411abscld 14175 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
4241adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (abs‘𝐶) ∈ ℝ)
439abscld 14175 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
449absge0d 14183 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
45 elrege0 12278 . . . . . . . . . . . . 13 ((abs‘𝐵) ∈ (0[,)+∞) ↔ ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
4643, 44, 45sylanbrc 698 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ (0[,)+∞))
47 0e0icopnf 12282 . . . . . . . . . . . . 13 0 ∈ (0[,)+∞)
4847a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
4946, 48ifclda 4120 . . . . . . . . . . 11 (𝜑 → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
5049adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘𝐵), 0) ∈ (0[,)+∞))
51 fconstmpt 5163 . . . . . . . . . . 11 (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶))
5251a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × {(abs‘𝐶)}) = (𝑥 ∈ ℝ ↦ (abs‘𝐶)))
53 eqidd 2623 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))
5440, 42, 50, 52, 53offval2 6914 . . . . . . . . 9 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, (abs‘𝐵), 0))))
55 ovif2 6738 . . . . . . . . . . 11 ((abs‘𝐶) · if(𝑥𝐴, (abs‘𝐵), 0)) = if(𝑥𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0))
568, 9absmuld 14193 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) = ((abs‘𝐶) · (abs‘𝐵)))
5756ifeq1da 4116 . . . . . . . . . . . 12 (𝜑 → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), ((abs‘𝐶) · 0)) = if(𝑥𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0)))
5841recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
5958mul01d 10235 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) · 0) = 0)
6059ifeq2d 4105 . . . . . . . . . . . 12 (𝜑 → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), ((abs‘𝐶) · 0)) = if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
6157, 60eqtr3d 2658 . . . . . . . . . . 11 (𝜑 → if(𝑥𝐴, ((abs‘𝐶) · (abs‘𝐵)), ((abs‘𝐶) · 0)) = if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
6255, 61syl5eq 2668 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · if(𝑥𝐴, (abs‘𝐵), 0)) = if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
6362mpteq2dv 4745 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ ↦ ((abs‘𝐶) · if(𝑥𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
6454, 63eqtrd 2656 . . . . . . . 8 (𝜑 → ((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
6564fveq2d 6195 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))))
66 eqid 2622 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))
6750, 66fmptd 6385 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)):ℝ⟶(0[,)+∞))
682, 3iblabs 23595 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
6943, 44iblpos 23559 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)))
7068, 69mpbid 222 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ))
7170simprd 479 . . . . . . . 8 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0))) ∈ ℝ)
72 abscl 14018 . . . . . . . . . 10 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
73 absge0 14027 . . . . . . . . . 10 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
74 elrege0 12278 . . . . . . . . . 10 ((abs‘𝐶) ∈ (0[,)+∞) ↔ ((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)))
7572, 73, 74sylanbrc 698 . . . . . . . . 9 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ (0[,)+∞))
761, 75syl 17 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ (0[,)+∞))
7767, 71, 76itg2mulc 23514 . . . . . . 7 (𝜑 → (∫2‘((ℝ × {(abs‘𝐶)}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))))
7865, 77eqtr3d 2658 . . . . . 6 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))) = ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))))
7941, 71remulcld 10070 . . . . . 6 (𝜑 → ((abs‘𝐶) · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘𝐵), 0)))) ∈ ℝ)
8078, 79eqeltrd 2701 . . . . 5 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ)
8180adantr 481 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ)
8210abscld 14175 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ)
8382rexrd 10089 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℝ*)
8410absge0d 14183 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≤ (abs‘(𝐶 · 𝐵)))
85 elxrge0 12281 . . . . . . . . . 10 ((abs‘(𝐶 · 𝐵)) ∈ (0[,]+∞) ↔ ((abs‘(𝐶 · 𝐵)) ∈ ℝ* ∧ 0 ≤ (abs‘(𝐶 · 𝐵))))
8683, 84, 85sylanbrc 698 . . . . . . . . 9 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ (0[,]+∞))
8732a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
8886, 87ifclda 4120 . . . . . . . 8 (𝜑 → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈ (0[,]+∞))
8988adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈ (0[,]+∞))
90 eqid 2622 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
9189, 90fmptd 6385 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)):ℝ⟶(0[,]+∞))
9291adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)):ℝ⟶(0[,]+∞))
9322releabsd 14190 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘((𝐶 · 𝐵) / (i↑𝑘))))
9411, 18, 21absdivd 14194 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))))
95 elfznn0 12433 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
9695ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑘 ∈ ℕ0)
97 absexp 14044 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
9814, 96, 97sylancr 695 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = ((abs‘i)↑𝑘))
99 absi 14026 . . . . . . . . . . . . . . . . . 18 (abs‘i) = 1
10099oveq1i 6660 . . . . . . . . . . . . . . . . 17 ((abs‘i)↑𝑘) = (1↑𝑘)
101 1exp 12889 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
10213, 101syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (1↑𝑘) = 1)
103100, 102syl5eq 2668 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘i)↑𝑘) = 1)
10498, 103eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(i↑𝑘)) = 1)
105104oveq2d 6666 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / (abs‘(i↑𝑘))) = ((abs‘(𝐶 · 𝐵)) / 1))
10682recnd 10068 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
107106adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘(𝐶 · 𝐵)) ∈ ℂ)
108107div1d 10793 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → ((abs‘(𝐶 · 𝐵)) / 1) = (abs‘(𝐶 · 𝐵)))
10994, 105, 1083eqtrd 2660 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (abs‘((𝐶 · 𝐵) / (i↑𝑘))) = (abs‘(𝐶 · 𝐵)))
11093, 109breqtrd 4679 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵)))
11184adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 0 ≤ (abs‘(𝐶 · 𝐵)))
112 breq1 4656 . . . . . . . . . . . . 13 ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → ((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵)) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵))))
113 breq1 4656 . . . . . . . . . . . . 13 (0 = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) → (0 ≤ (abs‘(𝐶 · 𝐵)) ↔ if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵))))
114112, 113ifboth 4124 . . . . . . . . . . . 12 (((ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) ≤ (abs‘(𝐶 · 𝐵)) ∧ 0 ≤ (abs‘(𝐶 · 𝐵))) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵)))
115110, 111, 114syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ (abs‘(𝐶 · 𝐵)))
116 iftrue 4092 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
117116adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))
118 iftrue 4092 . . . . . . . . . . . 12 (𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) = (abs‘(𝐶 · 𝐵)))
119118adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) = (abs‘(𝐶 · 𝐵)))
120115, 117, 1193brtr4d 4685 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
121120ex 450 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...3)) → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
122 0le0 11110 . . . . . . . . . . 11 0 ≤ 0
123122a1i 11 . . . . . . . . . 10 𝑥𝐴 → 0 ≤ 0)
124 iffalse 4095 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) = 0)
125 iffalse 4095 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) = 0)
126123, 124, 1253brtr4d 4685 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
127121, 126pm2.61d1 171 . . . . . . . 8 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐴, if(0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
1287, 127syl5eqbr 4688 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
129128ralrimivw 2967 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))
13039a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → ℝ ∈ V)
13189adantlr 751 . . . . . . 7 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0) ∈ (0[,]+∞))
132 eqidd 2623 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
133 eqidd 2623 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
134130, 36, 131, 132, 133ofrfval2 6915 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0) ≤ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
135129, 134mpbird 247 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))
136 itg2le 23506 . . . . 5 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))))
13738, 92, 135, 136syl3anc 1326 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))))
138 itg2lecl 23505 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (abs‘(𝐶 · 𝐵)), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
13938, 81, 137, 138syl3anc 1326 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
140139ralrimiva 2966 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)
141 eqidd 2623 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0)))
142 eqidd 2623 . . 3 ((𝜑𝑥𝐴) → (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))) = (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))))
143141, 142, 10isibl2 23533 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘((𝐶 · 𝐵) / (i↑𝑘)))), (ℜ‘((𝐶 · 𝐵) / (i↑𝑘))), 0))) ∈ ℝ)))
1446, 140, 143mpbir2and 957 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   · cmul 9941  +∞cpnf 10071  *cxr 10073  cle 10075   / cdiv 10684  3c3 11071  0cn0 11292  cz 11377  [,)cico 12177  [,]cicc 12178  ...cfz 12326  cexp 12860  cre 13837  abscabs 13974  MblFncmbf 23383  2citg2 23385  𝐿1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-0p 23437
This theorem is referenced by:  itgmulc2lem1  23598  itgmulc2lem2  23599  itgmulc2  23600  itgabs  23601  circlemeth  30718  fourierdlem83  40406  fourierdlem95  40418  sqwvfoura  40445  sqwvfourb  40446
  Copyright terms: Public domain W3C validator