![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdifprioo | Structured version Visualization version GIF version |
Description: An open interval is the closed interval without the bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iccdifprioo | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prunioo 12301 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵)) | |
2 | 1 | eqcomd 2628 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})) |
3 | 2 | difeq1d 3727 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵})) |
4 | difun2 4048 | . . . . 5 ⊢ (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}) | |
5 | iooinlbub 39723 | . . . . . 6 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ | |
6 | disj3 4021 | . . . . . 6 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵})) | |
7 | 5, 6 | mpbi 220 | . . . . 5 ⊢ (𝐴(,)𝐵) = ((𝐴(,)𝐵) ∖ {𝐴, 𝐵}) |
8 | 4, 7 | eqtr4i 2647 | . . . 4 ⊢ (((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵) |
9 | 3, 8 | syl6eq 2672 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
10 | 9 | 3expa 1265 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
11 | difssd 3738 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ (𝐴[,]𝐵)) | |
12 | simpr 477 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
13 | xrlenlt 10103 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
15 | 12, 14 | mtbid 314 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ ¬ 𝐵 < 𝐴) |
16 | 15 | notnotrd 128 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
17 | icc0 12223 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) | |
18 | 17 | adantr 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
19 | 16, 18 | mpbird 247 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴[,]𝐵) = ∅) |
20 | 11, 19 | sseqtrd 3641 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅) |
21 | ss0 3974 | . . . 4 ⊢ (((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) ⊆ ∅ → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = ∅) |
23 | simplr 792 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
24 | simpll 790 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ*) | |
25 | 23, 24, 16 | xrltled 39486 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
26 | ioo0 12200 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
27 | 26 | adantr 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
28 | 25, 27 | mpbird 247 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴(,)𝐵) = ∅) |
29 | 22, 28 | eqtr4d 2659 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
30 | 10, 29 | pm2.61dan 832 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) ∖ {𝐴, 𝐵}) = (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {cpr 4179 class class class wbr 4653 (class class class)co 6650 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 (,)cioo 12175 [,]cicc 12178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-ioo 12179 df-ico 12181 df-icc 12182 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |