Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpart Structured version   Visualization version   GIF version

Theorem icceuelpart 41372
Description: An element of a partitioned half opened interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpart ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem icceuelpart
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
21adantr 481 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → 𝑃 ∈ (RePart‘𝑀))
3 iccpartiun.m . . . . 5 (𝜑𝑀 ∈ ℕ)
4 iccelpart 41369 . . . . 5 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
53, 4syl 17 . . . 4 (𝜑 → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
65adantr 481 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
7 fveq1 6190 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
8 fveq1 6190 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
97, 8oveq12d 6668 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
109eleq2d 2687 . . . . . . 7 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
11 fveq1 6190 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
12 fveq1 6190 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
1311, 12oveq12d 6668 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1413eleq2d 2687 . . . . . . . 8 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514rexbidv 3052 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1610, 15imbi12d 334 . . . . . 6 (𝑝 = 𝑃 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1716rspcva 3307 . . . . 5 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1817adantld 483 . . . 4 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1918com12 32 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
202, 6, 19mp2and 715 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
213adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
221adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
23 elfzofz 12485 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2423adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2521, 22, 24iccpartxr 41355 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
26 fzofzp1 12565 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
2726adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
2821, 22, 27iccpartxr 41355 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
2925, 28jca 554 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
3029adantrr 753 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
31 elico1 12218 . . . . . . 7 (((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
3230, 31syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
333adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
341adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
35 elfzofz 12485 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
3635adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
3733, 34, 36iccpartxr 41355 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃𝑗) ∈ ℝ*)
38 fzofzp1 12565 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
3938adantl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
4033, 34, 39iccpartxr 41355 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
4137, 40jca 554 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
4241adantrl 752 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
43 elico1 12218 . . . . . . 7 (((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4442, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4532, 44anbi12d 747 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) ↔ ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))))))
46 elfzoelz 12470 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
4746zred 11482 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
48 elfzoelz 12470 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
4948zred 11482 . . . . . . . . 9 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
5047, 49anim12i 590 . . . . . . . 8 ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
5150adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
52 lttri4 10122 . . . . . . 7 ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
5351, 52syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
543, 1icceuelpartlem 41371 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 < 𝑗 → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))))
5554imp31 448 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))
56 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → 𝑋 ∈ ℝ*)
5728adantrr 753 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5857adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5937adantrl 752 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑗) ∈ ℝ*)
6059adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑗) ∈ ℝ*)
61 nltle2tri 41323 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑃𝑗) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6256, 58, 60, 61syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6362pm2.21d 118 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋) → 𝑖 = 𝑗))
64633expd 1284 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗))))
6564ex 450 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6665com23 86 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6766com25 99 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → ((𝑃𝑗) ≤ 𝑋 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))))
6867imp4b 613 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))
6968com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
70693adant3 1081 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7170com12 32 . . . . . . . . . . . 12 (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
72713ad2ant3 1084 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7372imp 445 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗))
7473com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7555, 74syldan 487 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7675expcom 451 . . . . . . 7 (𝑖 < 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
77 2a1 28 . . . . . . 7 (𝑖 = 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
783, 1icceuelpartlem 41371 . . . . . . . . . . 11 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
7978ancomsd 470 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
8079imp31 448 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))
8140adantrl 752 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8281adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8325adantrr 753 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑖) ∈ ℝ*)
8483adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑖) ∈ ℝ*)
85 nltle2tri 41323 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ* ∧ (𝑃𝑖) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8656, 82, 84, 85syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8786pm2.21d 118 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋) → 𝑖 = 𝑗))
88873expd 1284 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗))))
8988ex 450 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9089com23 86 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9190imp4b 613 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))
9291com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
93923adant2 1080 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9493com12 32 . . . . . . . . . . . 12 ((𝑃𝑖) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
95943ad2ant2 1083 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9695imp 445 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗))
9796com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9880, 97syldan 487 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9998expcom 451 . . . . . . 7 (𝑗 < 𝑖 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10076, 77, 993jaoi 1391 . . . . . 6 ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10153, 100mpcom 38 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
10245, 101sylbid 230 . . . 4 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
103102ralrimivva 2971 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
104103adantr 481 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
105 fveq2 6191 . . . . 5 (𝑖 = 𝑗 → (𝑃𝑖) = (𝑃𝑗))
106 oveq1 6657 . . . . . 6 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
107106fveq2d 6195 . . . . 5 (𝑖 = 𝑗 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑗 + 1)))
108105, 107oveq12d 6668 . . . 4 (𝑖 = 𝑗 → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) = ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))))
109108eleq2d 2687 . . 3 (𝑖 = 𝑗 → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))))
110109reu4 3400 . 2 (∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
11120, 104, 110sylanbrc 698 1 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ∃!wreu 2914   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cn 11020  [,)cico 12177  ...cfz 12326  ..^cfzo 12465  RePartciccp 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fz 12327  df-fzo 12466  df-iccp 41350
This theorem is referenced by:  iccpartdisj  41373
  Copyright terms: Public domain W3C validator