MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Visualization version   GIF version

Theorem icopnfcnv 22741
Description: Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
Assertion
Ref Expression
icopnfcnv (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2 0re 10040 . . . . . . . 8 0 ∈ ℝ
3 1re 10039 . . . . . . . . 9 1 ∈ ℝ
43rexri 10097 . . . . . . . 8 1 ∈ ℝ*
5 elico2 12237 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
62, 4, 5mp2an 708 . . . . . . 7 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
76simp1bi 1076 . . . . . 6 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
86simp3bi 1078 . . . . . . 7 (𝑥 ∈ (0[,)1) → 𝑥 < 1)
9 difrp 11868 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
107, 3, 9sylancl 694 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
118, 10mpbid 222 . . . . . 6 (𝑥 ∈ (0[,)1) → (1 − 𝑥) ∈ ℝ+)
127, 11rerpdivcld 11903 . . . . 5 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
136simp2bi 1077 . . . . . 6 (𝑥 ∈ (0[,)1) → 0 ≤ 𝑥)
147, 11, 13divge0d 11912 . . . . 5 (𝑥 ∈ (0[,)1) → 0 ≤ (𝑥 / (1 − 𝑥)))
15 elrege0 12278 . . . . 5 ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥))))
1612, 14, 15sylanbrc 698 . . . 4 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
1716adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)1)) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
18 elrege0 12278 . . . . . . 7 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
1918simplbi 476 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
20 readdcl 10019 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
213, 19, 20sylancr 695 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ)
222a1i 11 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ∈ ℝ)
2318simprbi 480 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
2419ltp1d 10954 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → 𝑦 < (𝑦 + 1))
25 ax-1cn 9994 . . . . . . . . . 10 1 ∈ ℂ
2619recnd 10068 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
27 addcom 10222 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 + 𝑦) = (𝑦 + 1))
2825, 26, 27sylancr 695 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) = (𝑦 + 1))
2924, 28breqtrrd 4681 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 𝑦 < (1 + 𝑦))
3022, 19, 21, 23, 29lelttrd 10195 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 0 < (1 + 𝑦))
3121, 30elrpd 11869 . . . . . 6 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ+)
3219, 31rerpdivcld 11903 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
33 divge0 10892 . . . . . 6 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦)))
3419, 23, 21, 30, 33syl22anc 1327 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ (𝑦 / (1 + 𝑦)))
3521recnd 10068 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℂ)
3635mulid1d 10057 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → ((1 + 𝑦) · 1) = (1 + 𝑦))
3729, 36breqtrrd 4681 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 < ((1 + 𝑦) · 1))
383a1i 11 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 1 ∈ ℝ)
39 ltdivmul 10898 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4019, 38, 21, 30, 39syl112anc 1330 . . . . . 6 (𝑦 ∈ (0[,)+∞) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4137, 40mpbird 247 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) < 1)
42 elico2 12237 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
432, 4, 42mp2an 708 . . . . 5 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
4432, 34, 41, 43syl3anbrc 1246 . . . 4 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4544adantl 482 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4626adantl 482 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
477adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
4847recnd 10068 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
4948, 46mulcld 10060 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ ℂ)
5046, 49, 48subadd2d 10411 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
51 1cnd 10056 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1 ∈ ℂ)
5251, 48, 46subdird 10487 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦)))
5346mulid2d 10058 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 · 𝑦) = 𝑦)
5453oveq1d 6665 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 · 𝑦) − (𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦)))
5552, 54eqtrd 2656 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = (𝑦 − (𝑥 · 𝑦)))
5655eqeq1d 2624 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((1 − 𝑥) · 𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥))
5748, 51, 46adddid 10064 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦)))
5848mulid1d 10057 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 1) = 𝑥)
5958oveq1d 6665 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6057, 59eqtrd 2656 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6160eqeq1d 2624 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
6250, 56, 613bitr4rd 301 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥))
63 eqcom 2629 . . . . . . 7 (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦)
64 eqcom 2629 . . . . . . 7 (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥)
6562, 63, 643bitr4g 303 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦)))
6635adantl 482 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℂ)
6731adantl 482 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℝ+)
6867rpne0d 11877 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ≠ 0)
6946, 48, 66, 68divmul3d 10835 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥𝑦 = (𝑥 · (1 + 𝑦))))
7011adantr 481 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℝ+)
7170rpcnd 11874 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℂ)
7270rpne0d 11877 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ≠ 0)
7348, 46, 71, 72divmul2d 10834 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 / (1 − 𝑥)) = 𝑦𝑥 = ((1 − 𝑥) · 𝑦)))
7465, 69, 733bitr4d 300 . . . . 5 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
75 eqcom 2629 . . . . 5 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
76 eqcom 2629 . . . . 5 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
7774, 75, 763bitr4g 303 . . . 4 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
7877adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
791, 17, 45, 78f1ocnv2d 6886 . 2 (⊤ → (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))))
8079trud 1493 1 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990   class class class wbr 4653  cmpt 4729  ccnv 5113  1-1-ontowf1o 5887  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  +crp 11832  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-ico 12181
This theorem is referenced by:  icopnfhmeo  22742  iccpnfcnv  22743
  Copyright terms: Public domain W3C validator