MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacosupp Structured version   Visualization version   Unicode version

Theorem imacosupp 7335
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
imacosupp  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( Fun  G  /\  ( F supp  Z ) 
C_  ran  G )  ->  ( G " (
( F  o.  G
) supp  Z ) )  =  ( F supp  Z ) ) )

Proof of Theorem imacosupp
StepHypRef Expression
1 cnvco 5308 . . . . . . . 8  |-  `' ( F  o.  G )  =  ( `' G  o.  `' F )
21imaeq1i 5463 . . . . . . 7  |-  ( `' ( F  o.  G
) " ( _V 
\  { Z }
) )  =  ( ( `' G  o.  `' F ) " ( _V  \  { Z }
) )
3 imaco 5640 . . . . . . 7  |-  ( ( `' G  o.  `' F ) " ( _V  \  { Z }
) )  =  ( `' G " ( `' F " ( _V 
\  { Z }
) ) )
42, 3eqtri 2644 . . . . . 6  |-  ( `' ( F  o.  G
) " ( _V 
\  { Z }
) )  =  ( `' G " ( `' F " ( _V 
\  { Z }
) ) )
54imaeq2i 5464 . . . . 5  |-  ( G
" ( `' ( F  o.  G )
" ( _V  \  { Z } ) ) )  =  ( G
" ( `' G " ( `' F "
( _V  \  { Z } ) ) ) )
6 funforn 6122 . . . . . . . 8  |-  ( Fun 
G  <->  G : dom  G -onto-> ran  G )
76biimpi 206 . . . . . . 7  |-  ( Fun 
G  ->  G : dom  G -onto-> ran  G )
87ad2antrl 764 . . . . . 6  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  G : dom  G -onto-> ran  G
)
9 simpl 473 . . . . . . . . . . . . 13  |-  ( ( F  e.  V  /\  G  e.  W )  ->  F  e.  V )
109anim2i 593 . . . . . . . . . . . 12  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  ( Z  e.  _V  /\  F  e.  V ) )
1110ancomd 467 . . . . . . . . . . 11  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  ( F  e.  V  /\  Z  e.  _V )
)
12 suppimacnv 7306 . . . . . . . . . . 11  |-  ( ( F  e.  V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  ( `' F " ( _V  \  { Z } ) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  ( F supp  Z )  =  ( `' F " ( _V 
\  { Z }
) ) )
1413sseq1d 3632 . . . . . . . . 9  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  (
( F supp  Z )  C_ 
ran  G  <->  ( `' F " ( _V  \  { Z } ) )  C_  ran  G ) )
1514biimpd 219 . . . . . . . 8  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  (
( F supp  Z )  C_ 
ran  G  ->  ( `' F " ( _V 
\  { Z }
) )  C_  ran  G ) )
1615adantld 483 . . . . . . 7  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  (
( Fun  G  /\  ( F supp  Z )  C_ 
ran  G )  -> 
( `' F "
( _V  \  { Z } ) )  C_  ran  G ) )
1716imp 445 . . . . . 6  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( `' F " ( _V 
\  { Z }
) )  C_  ran  G )
18 foimacnv 6154 . . . . . 6  |-  ( ( G : dom  G -onto-> ran  G  /\  ( `' F " ( _V 
\  { Z }
) )  C_  ran  G )  ->  ( G " ( `' G "
( `' F "
( _V  \  { Z } ) ) ) )  =  ( `' F " ( _V 
\  { Z }
) ) )
198, 17, 18syl2anc 693 . . . . 5  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( G " ( `' G " ( `' F "
( _V  \  { Z } ) ) ) )  =  ( `' F " ( _V 
\  { Z }
) ) )
205, 19syl5eq 2668 . . . 4  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( G " ( `' ( F  o.  G )
" ( _V  \  { Z } ) ) )  =  ( `' F " ( _V 
\  { Z }
) ) )
21 coexg 7117 . . . . . . . . 9  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  o.  G
)  e.  _V )
2221anim2i 593 . . . . . . . 8  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  ( Z  e.  _V  /\  ( F  o.  G )  e.  _V ) )
2322ancomd 467 . . . . . . 7  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  (
( F  o.  G
)  e.  _V  /\  Z  e.  _V )
)
24 suppimacnv 7306 . . . . . . 7  |-  ( ( ( F  o.  G
)  e.  _V  /\  Z  e.  _V )  ->  ( ( F  o.  G ) supp  Z )  =  ( `' ( F  o.  G )
" ( _V  \  { Z } ) ) )
2523, 24syl 17 . . . . . 6  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  (
( F  o.  G
) supp  Z )  =  ( `' ( F  o.  G ) " ( _V  \  { Z }
) ) )
2625imaeq2d 5466 . . . . 5  |-  ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  ->  ( G " ( ( F  o.  G ) supp  Z
) )  =  ( G " ( `' ( F  o.  G
) " ( _V 
\  { Z }
) ) ) )
2726adantr 481 . . . 4  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( G " ( ( F  o.  G ) supp  Z
) )  =  ( G " ( `' ( F  o.  G
) " ( _V 
\  { Z }
) ) ) )
2813adantr 481 . . . 4  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( F supp  Z )  =  ( `' F " ( _V 
\  { Z }
) ) )
2920, 27, 283eqtr4d 2666 . . 3  |-  ( ( ( Z  e.  _V  /\  ( F  e.  V  /\  G  e.  W
) )  /\  ( Fun  G  /\  ( F supp 
Z )  C_  ran  G ) )  ->  ( G " ( ( F  o.  G ) supp  Z
) )  =  ( F supp  Z ) )
3029exp31 630 . 2  |-  ( Z  e.  _V  ->  (
( F  e.  V  /\  G  e.  W
)  ->  ( ( Fun  G  /\  ( F supp 
Z )  C_  ran  G )  ->  ( G " ( ( F  o.  G ) supp  Z )
)  =  ( F supp 
Z ) ) ) )
31 ima0 5481 . . . 4  |-  ( G
" (/) )  =  (/)
32 id 22 . . . . . . 7  |-  ( -.  Z  e.  _V  ->  -.  Z  e.  _V )
3332intnand 962 . . . . . 6  |-  ( -.  Z  e.  _V  ->  -.  ( ( F  o.  G )  e.  _V  /\  Z  e.  _V )
)
34 supp0prc 7298 . . . . . 6  |-  ( -.  ( ( F  o.  G )  e.  _V  /\  Z  e.  _V )  ->  ( ( F  o.  G ) supp  Z )  =  (/) )
3533, 34syl 17 . . . . 5  |-  ( -.  Z  e.  _V  ->  ( ( F  o.  G
) supp  Z )  =  (/) )
3635imaeq2d 5466 . . . 4  |-  ( -.  Z  e.  _V  ->  ( G " ( ( F  o.  G ) supp 
Z ) )  =  ( G " (/) ) )
3732intnand 962 . . . . 5  |-  ( -.  Z  e.  _V  ->  -.  ( F  e.  _V  /\  Z  e.  _V )
)
38 supp0prc 7298 . . . . 5  |-  ( -.  ( F  e.  _V  /\  Z  e.  _V )  ->  ( F supp  Z )  =  (/) )
3937, 38syl 17 . . . 4  |-  ( -.  Z  e.  _V  ->  ( F supp  Z )  =  (/) )
4031, 36, 393eqtr4a 2682 . . 3  |-  ( -.  Z  e.  _V  ->  ( G " ( ( F  o.  G ) supp 
Z ) )  =  ( F supp  Z ) )
41402a1d 26 . 2  |-  ( -.  Z  e.  _V  ->  ( ( F  e.  V  /\  G  e.  W
)  ->  ( ( Fun  G  /\  ( F supp 
Z )  C_  ran  G )  ->  ( G " ( ( F  o.  G ) supp  Z )
)  =  ( F supp 
Z ) ) ) )
4230, 41pm2.61i 176 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( Fun  G  /\  ( F supp  Z ) 
C_  ran  G )  ->  ( G " (
( F  o.  G
) supp  Z ) )  =  ( F supp  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Fun wfun 5882   -onto->wfo 5886  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  gsumval3lem1  18306  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator