Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd2 Structured version   Visualization version   GIF version

Theorem isbnd2 33582
Description: The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isbnd2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝑀   𝑋,𝑟,𝑥

Proof of Theorem isbnd2
Dummy variables 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbndx 33581 . . 3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
21anbi1i 731 . 2 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ ((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅))
3 anass 681 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
4 r19.2z 4060 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
54ancoms 469 . . . 4 ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) → ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
6 oveq1 6657 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑟))
76eqeq2d 2632 . . . . . . 7 (𝑥 = 𝑦 → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
8 oveq2 6658 . . . . . . . 8 (𝑟 = 𝑠 → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)𝑠))
98eqeq2d 2632 . . . . . . 7 (𝑟 = 𝑠 → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)𝑠)))
107, 9cbvrex2v 3180 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ ∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠))
11 2rp 11837 . . . . . . . . . . . . 13 2 ∈ ℝ+
12 rpmulcl 11855 . . . . . . . . . . . . 13 ((2 ∈ ℝ+𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
1311, 12mpan 706 . . . . . . . . . . . 12 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ+)
1413ad2antll 765 . . . . . . . . . . 11 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (2 · 𝑠) ∈ ℝ+)
1514ad2antrr 762 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (2 · 𝑠) ∈ ℝ+)
16 rpcn 11841 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℂ)
17 2cnd 11093 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ∈ ℂ)
18 2ne0 11113 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+ → 2 ≠ 0)
20 divcan3 10711 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑠) / 2) = 𝑠)
2120eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → 𝑠 = ((2 · 𝑠) / 2))
2216, 17, 19, 21syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+𝑠 = ((2 · 𝑠) / 2))
2322oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ+ → (𝑦(ball‘𝑀)𝑠) = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
2423eqeq2d 2632 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) ↔ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2524biimpd 219 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ+ → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2625ad2antll 765 . . . . . . . . . . . . . 14 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2726adantr 481 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
2827imp 445 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
29 simpr 477 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
30 eleq2 2690 . . . . . . . . . . . . . . . 16 (𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑥𝑋𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))))
3130biimpac 503 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))
32 2re 11090 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
33 rpre 11839 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
34 remulcl 10021 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (2 · 𝑠) ∈ ℝ)
3532, 33, 34sylancr 695 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ+ → (2 · 𝑠) ∈ ℝ)
36 blhalf 22210 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ ((2 · 𝑠) ∈ ℝ ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
3736expr 643 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (2 · 𝑠) ∈ ℝ) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3835, 37sylan2 491 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ 𝑠 ∈ ℝ+) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
3938anasss 679 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠))))
4039imp 445 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥 ∈ (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4131, 40sylan2 491 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ (𝑥𝑋𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2)))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4241anassrs 680 . . . . . . . . . . . . 13 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → (𝑦(ball‘𝑀)((2 · 𝑠) / 2)) ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4329, 42eqsstrd 3639 . . . . . . . . . . . 12 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)((2 · 𝑠) / 2))) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4428, 43syldan 487 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 ⊆ (𝑥(ball‘𝑀)(2 · 𝑠)))
4513adantl 482 . . . . . . . . . . . . . 14 ((𝑦𝑋𝑠 ∈ ℝ+) → (2 · 𝑠) ∈ ℝ+)
46 rpxr 11840 . . . . . . . . . . . . . . . 16 ((2 · 𝑠) ∈ ℝ+ → (2 · 𝑠) ∈ ℝ*)
47 blssm 22223 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ*) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
4846, 47syl3an3 1361 . . . . . . . . . . . . . . 15 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
49483expa 1265 . . . . . . . . . . . . . 14 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (2 · 𝑠) ∈ ℝ+) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5045, 49sylan2 491 . . . . . . . . . . . . 13 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5150an32s 846 . . . . . . . . . . . 12 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5251adantr 481 . . . . . . . . . . 11 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → (𝑥(ball‘𝑀)(2 · 𝑠)) ⊆ 𝑋)
5344, 52eqssd 3620 . . . . . . . . . 10 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠)))
54 oveq2 6658 . . . . . . . . . . . 12 (𝑟 = (2 · 𝑠) → (𝑥(ball‘𝑀)𝑟) = (𝑥(ball‘𝑀)(2 · 𝑠)))
5554eqeq2d 2632 . . . . . . . . . . 11 (𝑟 = (2 · 𝑠) → (𝑋 = (𝑥(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))))
5655rspcev 3309 . . . . . . . . . 10 (((2 · 𝑠) ∈ ℝ+𝑋 = (𝑥(ball‘𝑀)(2 · 𝑠))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5715, 53, 56syl2anc 693 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑠)) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))
5857ex 450 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) ∧ 𝑥𝑋) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
5958ralrimdva 2969 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑦𝑋𝑠 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6059rexlimdvva 3038 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑦𝑋𝑠 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑠) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6110, 60syl5bi 232 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → ∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
62 rexn0 4074 . . . . . 6 (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅)
6362a1i 11 . . . . 5 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → 𝑋 ≠ ∅))
6461, 63jcad 555 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → (∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) → (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)))
655, 64impbid2 216 . . 3 (𝑀 ∈ (∞Met‘𝑋) → ((∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅) ↔ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
6665pm5.32i 669 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ (∀𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟) ∧ 𝑋 ≠ ∅)) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
672, 3, 663bitri 286 1 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  *cxr 10073   / cdiv 10684  2c2 11070  +crp 11832  ∞Metcxmt 19731  ballcbl 19733  Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-bnd 33578
This theorem is referenced by:  isbnd3  33583  blbnd  33586  ssbnd  33587
  Copyright terms: Public domain W3C validator