Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3 Structured version   Visualization version   GIF version

Theorem isbnd3 33583
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
isbnd3 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑋

Proof of Theorem isbnd3
Dummy variables 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bndmet 33580 . . 3 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
2 0re 10040 . . . . . 6 0 ∈ ℝ
32ne0ii 3923 . . . . 5 ℝ ≠ ∅
4 metf 22135 . . . . . . . . . 10 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
5 ffn 6045 . . . . . . . . . 10 (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . . 9 (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
71, 6syl 17 . . . . . . . 8 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋))
87ad2antrr 762 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋))
91, 4syl 17 . . . . . . . . . . . 12 (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
10 fdm 6051 . . . . . . . . . . . 12 (𝑀:(𝑋 × 𝑋)⟶ℝ → dom 𝑀 = (𝑋 × 𝑋))
119, 10syl 17 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
12 xpeq2 5129 . . . . . . . . . . . 12 (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅))
13 xp0 5552 . . . . . . . . . . . 12 (𝑋 × ∅) = ∅
1412, 13syl6eq 2672 . . . . . . . . . . 11 (𝑋 = ∅ → (𝑋 × 𝑋) = ∅)
1511, 14sylan9eq 2676 . . . . . . . . . 10 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅)
1615adantr 481 . . . . . . . . 9 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅)
17 dm0rn0 5342 . . . . . . . . 9 (dom 𝑀 = ∅ ↔ ran 𝑀 = ∅)
1816, 17sylib 208 . . . . . . . 8 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅)
19 0ss 3972 . . . . . . . 8 ∅ ⊆ (0[,]𝑥)
2018, 19syl6eqss 3655 . . . . . . 7 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥))
21 df-f 5892 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥)))
228, 20, 21sylanbrc 698 . . . . . 6 (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
2322ralrimiva 2966 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
24 r19.2z 4060 . . . . 5 ((ℝ ≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
253, 23, 24sylancr 695 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
26 isbnd2 33582 . . . . . 6 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
2726simprbi 480 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
28 2re 11090 . . . . . . . . . . 11 2 ∈ ℝ
29 simprlr 803 . . . . . . . . . . . 12 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+)
3029rpred 11872 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ)
31 remulcl 10021 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (2 · 𝑟) ∈ ℝ)
3228, 30, 31sylancr 695 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ)
336adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋))
34 simpll 790 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (Met‘𝑋))
35 simprl 794 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥𝑋)
36 simprr 796 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧𝑋)
37 metcl 22137 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝑀𝑧) ∈ ℝ)
3834, 35, 36, 37syl3anc 1326 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ ℝ)
39 metge0 22150 . . . . . . . . . . . . . 14 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑧𝑋) → 0 ≤ (𝑥𝑀𝑧))
4034, 35, 36, 39syl3anc 1326 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 0 ≤ (𝑥𝑀𝑧))
4132adantr 481 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) ∈ ℝ)
42 simprll 802 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦𝑋)
4342adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑦𝑋)
44 metcl 22137 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑥𝑋) → (𝑦𝑀𝑥) ∈ ℝ)
4534, 43, 35, 44syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) ∈ ℝ)
46 metcl 22137 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
4734, 43, 36, 46syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
4845, 47readdcld 10069 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ)
49 mettri2 22146 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
5034, 43, 35, 36, 49syl13anc 1328 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)))
5130adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ)
52 simplrr 801 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟))
5335, 52eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟))
54 metxmet 22139 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
5534, 54syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑀 ∈ (∞Met‘𝑋))
56 rpxr 11840 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
5756ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*)
5857ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℝ*)
59 elbl2 22195 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
6055, 58, 43, 35, 59syl22anc 1327 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟))
6153, 60mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑥) < 𝑟)
6236, 52eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟))
63 elbl2 22195 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6455, 58, 43, 36, 63syl22anc 1327 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟))
6562, 64mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑦𝑀𝑧) < 𝑟)
6645, 47, 51, 51, 61, 65lt2addd 10650 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟))
6751recnd 10068 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → 𝑟 ∈ ℂ)
68672timesd 11275 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟))
6966, 68breqtrrd 4681 . . . . . . . . . . . . . . 15 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟))
7038, 48, 41, 50, 69lelttrd 10195 . . . . . . . . . . . . . 14 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟))
7138, 41, 70ltled 10185 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟))
72 elicc2 12238 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
732, 41, 72sylancr 695 . . . . . . . . . . . . 13 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟))))
7438, 40, 71, 73mpbir3and 1245 . . . . . . . . . . . 12 (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥𝑋𝑧𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
7574ralrimivva 2971 . . . . . . . . . . 11 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))
76 ffnov 6764 . . . . . . . . . . 11 (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥𝑋𝑧𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))))
7733, 75, 76sylanbrc 698 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))
78 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟)))
7978feq3d 6032 . . . . . . . . . . 11 (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))))
8079rspcev 3309 . . . . . . . . . 10 (((2 · 𝑟) ∈ ℝ ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8132, 77, 80syl2anc 693 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦𝑋𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8281expr 643 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8382rexlimdvva 3038 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
841, 83syl 17 . . . . . 6 (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8584adantr 481 . . . . 5 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
8627, 85mpd 15 . . . 4 ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
8725, 86pm2.61dane 2881 . . 3 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
881, 87jca 554 . 2 (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
89 simpll 790 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋))
90 simpllr 799 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑥 ∈ ℝ)
9189adantr 481 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (Met‘𝑋))
92 simpr 477 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑦𝑋)
93 met0 22148 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
9491, 92, 93syl2anc 693 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) = 0)
95 simplr 792 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))
9695, 92, 92fovrnd 6806 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥))
97 elicc2 12238 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
982, 90, 97sylancr 695 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)))
9996, 98mpbid 222 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))
10099simp3d 1075 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦𝑀𝑦) ≤ 𝑥)
10194, 100eqbrtrrd 4677 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 0 ≤ 𝑥)
10290, 101ge0p1rpd 11902 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ+)
103 fovrn 6804 . . . . . . . . . . . . . 14 ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
1041033expa 1265 . . . . . . . . . . . . 13 (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
105104adantlll 754 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥))
106 elicc2 12238 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1072, 90, 106sylancr 695 . . . . . . . . . . . . 13 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
108107adantr 481 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
109105, 108mpbid 222 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
110109simp1d 1073 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
11190adantr 481 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 ∈ ℝ)
112 peano2re 10209 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
11390, 112syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ)
114113adantr 481 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑥 + 1) ∈ ℝ)
115109simp3d 1075 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) ≤ 𝑥)
116111ltp1d 10954 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → 𝑥 < (𝑥 + 1))
117110, 111, 114, 115, 116lelttrd 10195 . . . . . . . . 9 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) ∧ 𝑧𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1))
118117ralrimiva 2966 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
119 rabid2 3118 . . . . . . . 8 (𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧𝑋 (𝑦𝑀𝑧) < (𝑥 + 1))
120118, 119sylibr 224 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
12191, 54syl 17 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑀 ∈ (∞Met‘𝑋))
122113rexrd 10089 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑥 + 1) ∈ ℝ*)
123 blval 22191 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (𝑥 + 1) ∈ ℝ*) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
124121, 92, 122, 123syl3anc 1326 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)})
125120, 124eqtr4d 2659 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))
126 oveq2 6658 . . . . . . . 8 (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1)))
127126eqeq2d 2632 . . . . . . 7 (𝑟 = (𝑥 + 1) → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))))
128127rspcev 3309 . . . . . 6 (((𝑥 + 1) ∈ ℝ+𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
129102, 125, 128syl2anc 693 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
130129ralrimiva 2966 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))
131 isbnd 33579 . . . 4 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦𝑋𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)))
13289, 130, 131sylanbrc 698 . . 3 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
133132r19.29an 3077 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋))
13488, 133impbii 199 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  2c2 11070  +crp 11832  [,]cicc 12178  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  Bndcbnd 33566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-bnd 33578
This theorem is referenced by:  isbnd3b  33584  prdsbnd  33592
  Copyright terms: Public domain W3C validator