| Step | Hyp | Ref
| Expression |
| 1 | | bndmet 33580 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| 2 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 3 | 2 | ne0ii 3923 |
. . . . 5
⊢ ℝ
≠ ∅ |
| 4 | | metf 22135 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
| 5 | | ffn 6045 |
. . . . . . . . . 10
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋)) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
| 7 | 1, 6 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 Fn (𝑋 × 𝑋)) |
| 8 | 7 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀 Fn (𝑋 × 𝑋)) |
| 9 | 1, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
| 10 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → dom 𝑀 = (𝑋 × 𝑋)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (Bnd‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
| 12 | | xpeq2 5129 |
. . . . . . . . . . . 12
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = (𝑋 × ∅)) |
| 13 | | xp0 5552 |
. . . . . . . . . . . 12
⊢ (𝑋 × ∅) =
∅ |
| 14 | 12, 13 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → (𝑋 × 𝑋) = ∅) |
| 15 | 11, 14 | sylan9eq 2676 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → dom 𝑀 = ∅) |
| 16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → dom 𝑀 = ∅) |
| 17 | | dm0rn0 5342 |
. . . . . . . . 9
⊢ (dom
𝑀 = ∅ ↔ ran
𝑀 =
∅) |
| 18 | 16, 17 | sylib 208 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 = ∅) |
| 19 | | 0ss 3972 |
. . . . . . . 8
⊢ ∅
⊆ (0[,]𝑥) |
| 20 | 18, 19 | syl6eqss 3655 |
. . . . . . 7
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → ran 𝑀 ⊆ (0[,]𝑥)) |
| 21 | | df-f 5892 |
. . . . . . 7
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ran 𝑀 ⊆ (0[,]𝑥))) |
| 22 | 8, 20, 21 | sylanbrc 698 |
. . . . . 6
⊢ (((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 23 | 22 | ralrimiva 2966 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 24 | | r19.2z 4060 |
. . . . 5
⊢ ((ℝ
≠ ∅ ∧ ∀𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 25 | 3, 23, 24 | sylancr 695 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 = ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 26 | | isbnd2 33582 |
. . . . . 6
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
| 27 | 26 | simprbi 480 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 28 | | 2re 11090 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 29 | | simprlr 803 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ+) |
| 30 | 29 | rpred 11872 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑟 ∈ ℝ) |
| 31 | | remulcl 10021 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ 𝑟
∈ ℝ) → (2 · 𝑟) ∈ ℝ) |
| 32 | 28, 30, 31 | sylancr 695 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → (2 · 𝑟) ∈ ℝ) |
| 33 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀 Fn (𝑋 × 𝑋)) |
| 34 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (Met‘𝑋)) |
| 35 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 36 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 37 | | metcl 22137 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝑀𝑧) ∈ ℝ) |
| 38 | 34, 35, 36, 37 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ ℝ) |
| 39 | | metge0 22150 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑥𝑀𝑧)) |
| 40 | 34, 35, 36, 39 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑥𝑀𝑧)) |
| 41 | 32 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) ∈ ℝ) |
| 42 | | simprll 802 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑦 ∈ 𝑋) |
| 43 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 44 | | metcl 22137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑦𝑀𝑥) ∈ ℝ) |
| 45 | 34, 43, 35, 44 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) ∈ ℝ) |
| 46 | | metcl 22137 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
| 47 | 34, 43, 36, 46 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
| 48 | 45, 47 | readdcld 10069 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) ∈ ℝ) |
| 49 | | mettri2 22146 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
| 50 | 34, 43, 35, 36, 49 | syl13anc 1328 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ ((𝑦𝑀𝑥) + (𝑦𝑀𝑧))) |
| 51 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ) |
| 52 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 53 | 35, 52 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ (𝑦(ball‘𝑀)𝑟)) |
| 54 | | metxmet 22139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 55 | 34, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 56 | | rpxr 11840 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 57 | 56 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟)) → 𝑟 ∈ ℝ*) |
| 58 | 57 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℝ*) |
| 59 | | elbl2 22195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
| 60 | 55, 58, 43, 35, 59 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑥) < 𝑟)) |
| 61 | 53, 60 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑥) < 𝑟) |
| 62 | 36, 52 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ (𝑦(ball‘𝑀)𝑟)) |
| 63 | | elbl2 22195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
| 64 | 55, 58, 43, 36, 63 | syl22anc 1327 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 ∈ (𝑦(ball‘𝑀)𝑟) ↔ (𝑦𝑀𝑧) < 𝑟)) |
| 65 | 62, 64 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) < 𝑟) |
| 66 | 45, 47, 51, 51, 61, 65 | lt2addd 10650 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (𝑟 + 𝑟)) |
| 67 | 51 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑟 ∈ ℂ) |
| 68 | 67 | 2timesd 11275 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (2 · 𝑟) = (𝑟 + 𝑟)) |
| 69 | 66, 68 | breqtrrd 4681 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑥) + (𝑦𝑀𝑧)) < (2 · 𝑟)) |
| 70 | 38, 48, 41, 50, 69 | lelttrd 10195 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) < (2 · 𝑟)) |
| 71 | 38, 41, 70 | ltled 10185 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ≤ (2 · 𝑟)) |
| 72 | | elicc2 12238 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (2 · 𝑟) ∈ ℝ) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
| 73 | 2, 41, 72 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)) ↔ ((𝑥𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑥𝑀𝑧) ∧ (𝑥𝑀𝑧) ≤ (2 · 𝑟)))) |
| 74 | 38, 40, 71, 73 | mpbir3and 1245 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
| 75 | 74 | ralrimivva 2971 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟))) |
| 76 | | ffnov 6764 |
. . . . . . . . . . 11
⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝑀𝑧) ∈ (0[,](2 · 𝑟)))) |
| 77 | 33, 75, 76 | sylanbrc 698 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) |
| 78 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑥 = (2 · 𝑟) → (0[,]𝑥) = (0[,](2 · 𝑟))) |
| 79 | 78 | feq3d 6032 |
. . . . . . . . . . 11
⊢ (𝑥 = (2 · 𝑟) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟)))) |
| 80 | 79 | rspcev 3309 |
. . . . . . . . . 10
⊢ (((2
· 𝑟) ∈ ℝ
∧ 𝑀:(𝑋 × 𝑋)⟶(0[,](2 · 𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 81 | 32, 77, 80 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ((𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ 𝑋 = (𝑦(ball‘𝑀)𝑟))) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 82 | 81 | expr 643 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 83 | 82 | rexlimdvva 3038 |
. . . . . . 7
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 84 | 1, 83 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ (Bnd‘𝑋) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 85 | 84 | adantr 481 |
. . . . 5
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → (∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 86 | 27, 85 | mpd 15 |
. . . 4
⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 87 | 25, 86 | pm2.61dane 2881 |
. . 3
⊢ (𝑀 ∈ (Bnd‘𝑋) → ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 88 | 1, 87 | jca 554 |
. 2
⊢ (𝑀 ∈ (Bnd‘𝑋) → (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |
| 89 | | simpll 790 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Met‘𝑋)) |
| 90 | | simpllr 799 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑥 ∈ ℝ) |
| 91 | 89 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| 92 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 93 | | met0 22148 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
| 94 | 91, 92, 93 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) = 0) |
| 95 | | simplr 792 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) |
| 96 | 95, 92, 92 | fovrnd 6806 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ∈ (0[,]𝑥)) |
| 97 | | elicc2 12238 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
| 98 | 2, 90, 97 | sylancr 695 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥))) |
| 99 | 96, 98 | mpbid 222 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑦) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑦) ∧ (𝑦𝑀𝑦) ≤ 𝑥)) |
| 100 | 99 | simp3d 1075 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦𝑀𝑦) ≤ 𝑥) |
| 101 | 94, 100 | eqbrtrrd 4677 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 0 ≤ 𝑥) |
| 102 | 90, 101 | ge0p1rpd 11902 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ+) |
| 103 | | fovrn 6804 |
. . . . . . . . . . . . . 14
⊢ ((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 104 | 103 | 3expa 1265 |
. . . . . . . . . . . . 13
⊢ (((𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 105 | 104 | adantlll 754 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ (0[,]𝑥)) |
| 106 | | elicc2 12238 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 𝑥
∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 107 | 2, 90, 106 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 108 | 107 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
| 109 | 105, 108 | mpbid 222 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)) |
| 110 | 109 | simp1d 1073 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) |
| 111 | 90 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ ℝ) |
| 112 | | peano2re 10209 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
| 113 | 90, 112 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
| 114 | 113 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑥 + 1) ∈ ℝ) |
| 115 | 109 | simp3d 1075 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ≤ 𝑥) |
| 116 | 111 | ltp1d 10954 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → 𝑥 < (𝑥 + 1)) |
| 117 | 110, 111,
114, 115, 116 | lelttrd 10195 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 118 | 117 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 119 | | rabid2 3118 |
. . . . . . . 8
⊢ (𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)} ↔ ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) < (𝑥 + 1)) |
| 120 | 118, 119 | sylibr 224 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 121 | 91, 54 | syl 17 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 122 | 113 | rexrd 10089 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑥 + 1) ∈
ℝ*) |
| 123 | | blval 22191 |
. . . . . . . 8
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ (𝑥 + 1) ∈ ℝ*) →
(𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 124 | 121, 92, 122, 123 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → (𝑦(ball‘𝑀)(𝑥 + 1)) = {𝑧 ∈ 𝑋 ∣ (𝑦𝑀𝑧) < (𝑥 + 1)}) |
| 125 | 120, 124 | eqtr4d 2659 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) |
| 126 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑟 = (𝑥 + 1) → (𝑦(ball‘𝑀)𝑟) = (𝑦(ball‘𝑀)(𝑥 + 1))) |
| 127 | 126 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑟 = (𝑥 + 1) → (𝑋 = (𝑦(ball‘𝑀)𝑟) ↔ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1)))) |
| 128 | 127 | rspcev 3309 |
. . . . . 6
⊢ (((𝑥 + 1) ∈ ℝ+
∧ 𝑋 = (𝑦(ball‘𝑀)(𝑥 + 1))) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 129 | 102, 125,
128 | syl2anc 693 |
. . . . 5
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ∧ 𝑦 ∈ 𝑋) → ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 130 | 129 | ralrimiva 2966 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟)) |
| 131 | | isbnd 33579 |
. . . 4
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑦(ball‘𝑀)𝑟))) |
| 132 | 89, 130, 131 | sylanbrc 698 |
. . 3
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
| 133 | 132 | r19.29an 3077 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) → 𝑀 ∈ (Bnd‘𝑋)) |
| 134 | 88, 133 | impbii 199 |
1
⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) |